Эту задачу можно решить с уравнения,возьмём стоимость котёнка за Х, тогда щенок будет стоить 3Х, т.к. он дороже котёнка в 3 раза дороже, тогда стоимость попугая будет 6Х, т.к он дороже щенка в 2 раза,значит 2 попугая будут стоить 12Х и мы знаем, что за всех заплатили 1920012х+3х+х=1920016х=19200х=19200/16х=1200 - это стоимость котёнкатеперь можем найти стоимость щёнка3х=3*1200=3600теперь найдём стоимость двух попугаев12х=12*1200=14400теперь стоимость одного попугая14400/2=7200 проверка7200+7200+3600+1200=19200
Для того, чтобы доказать равномощность двух множеств, приведем пример конструкции, в которой возможно построить взаимно однозначное соответствие. Рассмотрим два квадрата: A и B, пусть площадь квадрата A больше площади квадрата B. Поместим квадраты в пространство. Пусть A - основание четырехугольной пирамиды, а B - какое нибудь сечение, при этом плоскости квадратов параллельны. Пусть боковые ребра пирамиды пересекаются в точке S. Заметим, что для любой точки X, принадлежащей B, можно поставить в соответствие точку Y, которая является пересечением SX с плоскостью квадрата A. Причем очевидно, что пара (X, Y) единственна в том смысле, что X и Y не участвуют больше ни в каких других парах. Итак, нам удалось построить взаимно-однозначное соответствие, следовательно |A|=|B|
Для того, чтобы доказать равномощность двух множеств, приведем пример конструкции, в которой возможно построить взаимно однозначное соответствие. Рассмотрим два квадрата: A и B, пусть площадь квадрата A больше площади квадрата B. Поместим квадраты в пространство. Пусть A - основание четырехугольной пирамиды, а B - какое нибудь сечение, при этом плоскости квадратов параллельны. Пусть боковые ребра пирамиды пересекаются в точке S. Заметим, что для любой точки X, принадлежащей B, можно поставить в соответствие точку Y, которая является пересечением SX с плоскостью квадрата A. Причем очевидно, что пара (X, Y) единственна в том смысле, что X и Y не участвуют больше ни в каких других парах. Итак, нам удалось построить взаимно-однозначное соответствие, следовательно |A|=|B|