По заданию самолет должен пролететь из Москвы в Белгород. Если бы самолет полетел со скоростью, большей на 20%, то преодолел бы это расстояние за 1 час 10 минут. За какое время самолет пролетит это расстояние ОЧЕНЬ НУЖНО
Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC. Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия. Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C. Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка. Точка M (середина AC): x=(-1+3)/2=1 y=(2+(-2))/2=0 z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC): x=(1+3)/2=2 y=(0+(-2))/2=-1 z=(4+1)/2=5/2
Находим координаты точки В как точки пересечения высоты и биссектрисы.
7x - 10y + 1 = 0 7x - 10y + 1 = 0
3x - 2y + 5 = 0 (*(-5)) -15x + 10y - 25 = 0
-8x - 24 = 0
x = 24/(-8) = - 3, y = (3*(-3) + 5)/2 = -4/2 = -2.
Точка В(-3; -2). Вектор АВ = (-3-2; -2-(-1)) = (-5; -1)
Получаем уравнение АВ: (х - 2)/(-5) = (у + 1)/(-1) (каноническое).
5у + 5 = х - 2, х - 5у - 7 = 0 (общее)
у = (1/5)х - (7/5) (с угловым коэффициентом).
По коэффициентам общих уравнений стороны АВ и биссектрисы находим угол между ними.
tgα = (A1B2 - A2B1)/(A1A2 + B1B2) = (3*(*5) - 1*(-2))/(3 + 10) = 13/13 = 1.
Это угол 45 градусов.
На такой же угол от биссектрисы будет отстоять сторона ВС треугольника.
Находим угловой коэффициент (тангенс угла наклона к оси Ох) биссектрисы из общего уравнения: к = (3/2).
Тогда угол наклона стороны ВС к оси Ох равен сумме углов с к1 = 1 и к2 = (3/2) = 1,5.
tgβ = (k1 + r2)/(1 - k1k2) = (1 + 1,5) \ (1 - 1*1,5) = 2,5 / (-0,5) = -5.
Тогда уравнение ВС: у = -5х + в.
Дл определения параметра "в" подставим координаты точки В.
-2 = (-5)*(-3) + в, отсюда в = -2 - 15 = -17.
Уравнение ВС: у = -5х - 17.
Уравнение стороны АС находим как прямой, перпендикулярной высоте (с учётом А1А2 + В1В2 = 0) : 10х + 7у + С = 0.
Для определения С подставим координаты точки А:
10*2 + 7*(-1) + С = 0, откуда С = 7 - 20 = -13.
Уравнение АС: 10х + 7у - 13 = 0.
Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия.
Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C.
Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка.
Точка M (середина AC):
x=(-1+3)/2=1
y=(2+(-2))/2=0
z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC):
x=(1+3)/2=2
y=(0+(-2))/2=-1
z=(4+1)/2=5/2
N(2;-1;5/2)
MN² = (2-1)²+(-1-0)²+((5/2)-2) = 1+1+1/4 = 9/4 = (3/2)²
|MN| = 3/2
ответ, разумеется, такой же: длина MN равна 1,5.