Log(x-2) по осн-ю 1/3> -3log корень 3 степени из 1/5 по осн-ю 1/5 одз: x> 2-log(x-2) по осн-ю 3> 3 log 1/5 в степени 1/3 по осн-ю 5-log(x-2) по осн-ю 3> log 1/5 по осн-ю 5-log(x-2) по осн-ю 3> -log5 по осн-ю 5-log(x-2) по осн-ю 3> -1 (домножаем на -1 и меняем знак)log(x-2) по осн-ю 3< 1log(x-2) по осн-ю 3< log 3 по осн-ю 3 т.к 3> 1 ===> функция возрастает(знак сохраняется)убираем логарифмы: x-2< 3 x< 5с учетом одз получаем решение: (2; 5) ответ: (2; 5
1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
32 - составное число
20 - составное число
12 - составное число
Разложим число 32 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
32 : 2 = 16 - делится на простое число 2
16 : 2 = 8 - делится на простое число 2
8 : 2 = 4 - делится на простое число 2
4 : 2 = 2 - делится на простое число 2.
Завершаем деление, так как 2 простое число
Разложим число 20 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
20 : 2 = 10 - делится на простое число 2
10 : 2 = 5 - делится на простое число 2.
Завершаем деление, так как 5 простое число
Разложим число 12 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Прежде всего запишем множители самого большого числа, а затем меньших чисел. Найдем недостающие множители, выделим синим цветом в разложении меньших чисел множители, которые не вошли в разложение большего числа.
32 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2
20 = 2 ∙ 2 ∙ 5
12 = 2 ∙ 2 ∙ 3
3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом
Пошаговое объяснение:
1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
32 - составное число
20 - составное число
12 - составное число
Разложим число 32 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
32 : 2 = 16 - делится на простое число 2
16 : 2 = 8 - делится на простое число 2
8 : 2 = 4 - делится на простое число 2
4 : 2 = 2 - делится на простое число 2.
Завершаем деление, так как 2 простое число
Разложим число 20 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
20 : 2 = 10 - делится на простое число 2
10 : 2 = 5 - делится на простое число 2.
Завершаем деление, так как 5 простое число
Разложим число 12 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Прежде всего запишем множители самого большого числа, а затем меньших чисел. Найдем недостающие множители, выделим синим цветом в разложении меньших чисел множители, которые не вошли в разложение большего числа.
32 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2
20 = 2 ∙ 2 ∙ 5
12 = 2 ∙ 2 ∙ 3
3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом
НОК (32 ; 20 ; 12) = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 5 ∙ 3 = 480