Вероятность, что изделие имеет дефект а p(a) = 0,06. вероятность, что изделие имеет дефект в p(b) = 0,07. вероятность, что изделие имеет дефект а или дефект в, p(aub) = 0,1 (то есть 10%, т.к. процент годной продукции по условию 90%) p(aub) = p(a) + p(b) - p(a∩b), где p(a∩b) - это вероятность, что изделие имеет и дефект а, и дефект в. тогда (выражая p(a∩b) из предыдущего равенства) p(a∩b) = p(a)+p(b) - p(aub) = 0,06 + 0,07 - 0,1 = 0,13 - 0,1 = 0,03. искомая вероятность, это вероятность, что изделие имеет только дефект а и при этом не имеет дефекта в, то есть искомая вероятность это p(a - a∩b) = p(a) - p(a∩b) = 0,06 - 0,03 = 0,03.
В сечении имеем равнобедренный треугольник МРК. МК = МР. Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4. Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP: (по условию МД = a/2, а КД = РД = a/4) PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) = = √((4a²+a²-2a²)/16 = (a√3) / 4. Высота h треугольника РМК равна: h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8. Искомая площадь равна: S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.
Пошаговое объяснение:
Вероятность, что изделие имеет дефект а p(a) = 0,06. вероятность, что изделие имеет дефект в p(b) = 0,07. вероятность, что изделие имеет дефект а или дефект в, p(aub) = 0,1 (то есть 10%, т.к. процент годной продукции по условию 90%) p(aub) = p(a) + p(b) - p(a∩b), где p(a∩b) - это вероятность, что изделие имеет и дефект а, и дефект в. тогда (выражая p(a∩b) из предыдущего равенства) p(a∩b) = p(a)+p(b) - p(aub) = 0,06 + 0,07 - 0,1 = 0,13 - 0,1 = 0,03. искомая вероятность, это вероятность, что изделие имеет только дефект а и при этом не имеет дефекта в, то есть искомая вероятность это p(a - a∩b) = p(a) - p(a∩b) = 0,06 - 0,03 = 0,03.
ответ 0,03
Вот такой ответ! Удачи★★♥♥
Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4.
Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP:
(по условию МД = a/2, а КД = РД = a/4)
PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) =
= √((4a²+a²-2a²)/16 = (a√3) / 4.
Высота h треугольника РМК равна:
h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8.
Искомая площадь равна:
S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.