Согласно условию неотрицательности X и Y, пар, удовлетворяющих последнему уравнению будет 10001 (y=0, 1, 2, 3,...,10000). Однако, при НЕЧЁТНЫХ Y, X будет принимать дробные значения. Из 10 тысяч возможных значений Y отбросим нечётные. Их ровно 5000.
Далее спорная ситуация - кто-то причисляет 0 к натуральным числам, кто-то нет. Если Вас учат тому, что 0 - натуральное число, то значений будет 10001-5000 = 5001, если же 0 - НЕ НАТУРАЛЬНОЕ в Вашей программе, то значений будет 10001 - 5000 - 2 = 4999. Двойка в последнем выражении - это две пары X=0, Y=10000 и X=35000, Y=0.
Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
2x = 70000 - 7y
x = 35000 - 3,5y
x>0, y>0 - так как X и Y натуральные.
Согласно условию неотрицательности X и Y, пар, удовлетворяющих последнему уравнению будет 10001 (y=0, 1, 2, 3,...,10000). Однако, при НЕЧЁТНЫХ Y, X будет принимать дробные значения. Из 10 тысяч возможных значений Y отбросим нечётные. Их ровно 5000.
Далее спорная ситуация - кто-то причисляет 0 к натуральным числам, кто-то нет. Если Вас учат тому, что 0 - натуральное число, то значений будет 10001-5000 = 5001, если же 0 - НЕ НАТУРАЛЬНОЕ в Вашей программе, то значений будет 10001 - 5000 - 2 = 4999. Двойка в последнем выражении - это две пары X=0, Y=10000 и X=35000, Y=0.
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр.
А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр).
так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем