1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль). 2) Находим точки пересечения с осями: х = 0 у = -3/5 это точка пересечения с осью у. у = 0 надо числитель приравнять 0: 2х - 3 = 0 х = 3/2 это точка пересечения с осью х. 3) Исследуем функцию на парность или непарность: Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). Правда, чаще встречается название этих свойств функции как чётность и нечётность. 2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной. 4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает. Если производная положительна, то функция возрастает и наоборот. . Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4). 5) Находим экстремумы функции: Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума. 6) Исследуем функции на выпуклость, вогнутость: Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая. Вторая производная равна . При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута. 7) Находим асимптоты графика функции: Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева 8) Можно найти дополнительные точки и построить график График и таблица точек приведены в приложении.
Надо приравнять выражения (3,8 – у)/5,5 и (3,6 – y)/11 и решить получившееся уравнение.
(3,8 – у)/5,5 = (3,6 – y)/11 – применим основное свойство пропорции: В верной пропорции произведение крайних членов пропорции равно произведению средних членов пропорции. Крайние - (3,8 – у) и 11; средние (3,6 – y) и 5,5;
11(3,8 – y) = 5,5(3,6 – y);
41,8 – 11 y = 19,8 – 5,5y – перенесем слагаемые из правой части уравнения в левую с противоположными знаками;
2) Находим точки пересечения с осями:
х = 0 у = -3/5 это точка пересечения с осью у.
у = 0 надо числитель приравнять 0: 2х - 3 = 0 х = 3/2 это точка пересечения с осью х.
3) Исследуем функцию на парность или непарность:
Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0).
Правда, чаще встречается название этих свойств функции как чётность и нечётность.
2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной.
4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает.
Если производная положительна, то функция возрастает и наоборот.
.
Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4).
5) Находим экстремумы функции:
Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума.
6) Исследуем функции на выпуклость, вогнутость:
Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая.
Вторая производная равна .
При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута.
7) Находим асимптоты графика функции:
Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева
8) Можно найти дополнительные точки и построить график
График и таблица точек приведены в приложении.
ответ:4
Пошаговое объяснение:
Надо приравнять выражения (3,8 – у)/5,5 и (3,6 – y)/11 и решить получившееся уравнение.
(3,8 – у)/5,5 = (3,6 – y)/11 – применим основное свойство пропорции: В верной пропорции произведение крайних членов пропорции равно произведению средних членов пропорции. Крайние - (3,8 – у) и 11; средние (3,6 – y) и 5,5;
11(3,8 – y) = 5,5(3,6 – y);
41,8 – 11 y = 19,8 – 5,5y – перенесем слагаемые из правой части уравнения в левую с противоположными знаками;
41,8 – 11 y - 19,8 + 5,5y = 0;
- 5,5y + 22 = 0;
- 5,5y = - 22;
y = - 22 : (- 5,5);
y = 4.