Проведем высоту трапеции Н через точку К. Она точкой К делится пополам, так как эта точка лежит на средней линии трапеции. Таким образом, высоты обоих указанных треугольников равны Н/2.
Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.
S(BKC) = 1/2*BC*H/2 S(AKD) = 1/2*AD*H/2
Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:
Проведем высоту трапеции Н через точку К. Она точкой К делится пополам, так как эта точка лежит на средней линии трапеции. Таким образом, высоты обоих указанных треугольников равны Н/2.
Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.
S(BKC) = 1/2*BC*H/2 S(AKD) = 1/2*AD*H/2
Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:
Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.
S(BKC) = 1/2*BC*H/2
S(AKD) = 1/2*AD*H/2
Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:
S(ABCD) = 1/2*(BC + AD)*H
Раскроем скобки:
S(ABCD) = 1/2*BC*H + 1/2*AD*H = 2*S(BKC) + 2*S(AKD) = 2*(S(BKC) + S(AKD)).
Таким образом:
S(BKC) + S(AKD) = S(ABCD):2.
Что и требовалось доказать.
Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.
S(BKC) = 1/2*BC*H/2
S(AKD) = 1/2*AD*H/2
Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:
S(ABCD) = 1/2*(BC + AD)*H
Раскроем скобки:
S(ABCD) = 1/2*BC*H + 1/2*AD*H = 2*S(BKC) + 2*S(AKD) = 2*(S(BKC) + S(AKD)).
Таким образом:
S(BKC) + S(AKD) = S(ABCD):2.
Что и требовалось доказать.