В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
калинка2006
калинка2006
10.06.2022 05:39 •  Математика

Подскажите с решением задачи. Это из темы "НОД. Алгоритм Евклида". На доске написаны числа a и b. Ваня заменяет одно из чисел на сумму или разность написанных чисел. Какое минимальное натуральное число он может получить за несколько таких операций, если:
a = 7n + 3, b = 11n + 5.

Показать ответ
Ответ:
sunriseliva
sunriseliva
16.11.2020 17:40

за какой класс?просто у меня 8-ой, если 8-ой то

0,0(0 оценок)
Ответ:
melnikmaryana
melnikmaryana
11.01.2024 13:30
Добрый день! Рад, что вы обратились ко мне за помощью. Давайте разберемся с этой задачей.

Задача состоит в том, чтобы найти минимальное натуральное число, которое можно получить, заменяя одно из чисел на сумму или разность написанных чисел a и b.

Для начала, давайте проверим, какие числа можно получить, если мы заменим число a:

1) Если мы заменим число a на сумму a + b: a + b = (7n + 3) + (11n + 5). Складываем числа в скобках, чтобы получить: 7n + 11n + 3 + 5 = 18n + 8. В итоге, мы получили число 18n + 8.

2) Если мы заменим число a на разность a - b: a - b = (7n + 3) - (11n + 5). Вычитаем числа в скобках: 7n - 11n + 3 - 5 = -4n - 2. В итоге, мы получили число -4n - 2.

Теперь давайте посмотрим, что произойдет, если мы заменим число b:

3) Если мы заменим число b на сумму a + b: a + b = (7n + 3) + (11n + 5). Складываем числа в скобках, чтобы получить: 7n + 11n + 3 + 5 = 18n + 8. В итоге, мы получили число 18n + 8, что совпадает с результатом замены числа a на сумму a + b.

4) Если мы заменим число b на разность a - b: a - b = (7n + 3) - (11n + 5). Вычитаем числа в скобках: 7n - 11n + 3 - 5 = -4n - 2. В итоге, мы получили число -4n - 2, что совпадает с результатом замены числа a на разность a - b.

Итак, мы видим, что независимо от того, какое число мы заменим на сумму или разность, мы получим одно и то же выражение -4n - 2.

Теперь, давайте найдем минимальное натуральное число, которое можно получить при помощи приведенных операций. Если мы продолжим заменять одно из чисел на сумму или разность, мы можем увеличивать или уменьшать значение -4n, но мы никогда не получим положительное число.

Минимальное натуральное число равно 1. К сожалению, мы не сможем его получить, поскольку -4n - 2 будет всегда равно отрицательному числу.

Таким образом, ответ на вопрос состоит в том, что минимальное натуральное число, которое можно получить, равно -4n - 2.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота