Пользуясь графиком движения всадника, определите: [4] 1) Сколько часов всадник был в пути? 2) Какова продолжительность каждой остановки? 3) Какова скорость движения всадника на обратном пути? 4) Какое расстояние проскакал всадник за первые 5 часов?
Начну с конца. Так как за 3 матча команда пропустила 1 мяч следовательно и проиграла 1 матч, со счетом 1 : 0.
Остается 2 матча один из которых команда сыграла в ничью а другой выйграла , при этом забив 3 мяча.
Выйграла матч команда со счетом 3 : 0.
Так как с другим счетом выйграть не могла. Если бы победа была со счетом 2 : 1 то по условиям задачи команда должна была пропустить 2 мяча а у нас по условиям команда пропустила 1.
В ничью команда сыграла со счетом 0 : 0.
Так как мы выяснили что команда один матч выйграла 3 : 0 и проиграла второй 1 : 0 и по условиям задачи пропущеных и забитых мячей больше нет, то остается одна ничья в которой небыло забито не одного гола 0 : 0!
Здравствуйте!
Начну с конца. Так как за 3 матча команда пропустила 1 мяч следовательно и проиграла 1 матч, со счетом 1 : 0.
Остается 2 матча один из которых команда сыграла в ничью а другой выйграла , при этом забив 3 мяча.
Выйграла матч команда со счетом 3 : 0.
Так как с другим счетом выйграть не могла. Если бы победа была со счетом 2 : 1 то по условиям задачи команда должна была пропустить 2 мяча а у нас по условиям команда пропустила 1.
В ничью команда сыграла со счетом 0 : 0.
Так как мы выяснили что команда один матч выйграла 3 : 0 и проиграла второй 1 : 0 и по условиям задачи пропущеных и забитых мячей больше нет, то остается одна ничья в которой небыло забито не одного гола 0 : 0!
Пошаговое объяснение:
Геометрическое решение.
Применим перенос одного из отрезков так, чтобы их концы соединились.
Перенесём отрезок AD1 точкой D1 в точку D.
При этом точка А перейдёт в точку А2.
Получим треугольник DA2F1 с искомым углом D. Находим длины его сторон.
Сначала определим их проекции на основание.
AD = 1 + 2*(1*cos 60º) = 1 + 2*(1*(1/2)) = 2.
Тогда AD1 = √(2² + 1²) = √(4 + 1) = √5.
Находим DF = 2*(1*cos 30º) = 2*(1*(√3/2)) = √3.
Тогда DF1 = √((√3)² + 1²) = √(3 + 1) = √4 = 2.
И последний отрезок A2F1. Он равен:
A2F1= √(2² + 1²) = √(4 + 1) = √5.
Применим теорему косинусов.
cos D = (2² + (√5)² - (√5)²) / (2*2*√5) = 4/(4*√5) = √5/5 ≈ 0,4472.
Угол D = arccos(√5/5) = 1,1071 радиан или 63,435 градуса.