В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
April3369
April3369
31.03.2020 01:34 •  Математика

Пользуясь ОБРАЗЦОМ постройте графики следующих уравнений
(в одной системе координат)
а) 4х-у=7
б)2х+8у=16
в)6х+у=0
г) 2х-3у=-4

Показать ответ
Ответ:
ObraztsovaOlga
ObraztsovaOlga
27.07.2020 17:12

наименьшее значение функции на отрезке [-3; 0] равно 2

Пошаговое объяснение:

f(x) = 2x^{3} - 3x^{2} -36x +2; [-3; 0]; [

найдем критические точки функции и посмотрим на условие непрерывности функции

для этого найдем производную

f'(x) = 6x^{2} -6x -36

функция существует  и непрерывна везде и в том числе на отрезке [-3; 0], значит по теореме Вейерштрасса, на отрезке функция имеет точки экстремума.

найдем критические точки функции

6x² - 6x -36 =0

6(x²- x -6) = 6(x-3)(x+2)

точки х = 2, х = -3

точка х=2 не принадлежит нашему отрезку, она нас не интересует

найдем значения функции в критической т х= -3 и на конце отрезка х=0

f(0) = 2

f(-3) = 29

наименьшее значение функции на отрезке [-3; 0] равно 2

0,0(0 оценок)
Ответ:
annelya009
annelya009
02.01.2021 18:54

y''' - 4y' = 24e^{2x} - 4\cos 2x + 8\sin 2x — неоднородное дифференциальное уравнение третьего порядка с постоянными коэффициентами

Принцип суперпозиции решений

Общее решение такого уравнения: y = y^{*} + \widetilde{y}, где y^{*} — общее решение соответствующего однородного уравнения, \widetilde{y} — частное решение неоднородного дифференциального уравнения с постоянными коэффициентами.

1) \ y^{*}: \ y''' - 4y' = 0

Метод Эйлера: y = e^{kx}; \ y' = ke^{kx}; \ y''' = k^{3}e^{kx}

Характеристическое уравнение: k^{3} - 4k = 0

k(k^{2}- 4) = 0

\left[\begin{array}{ccc}k_{1} = 0, \ \ \ \ \\k_{2,3} = \pm 2\\\end{array}\right

Фундаментальная система решений:

y_{1} = e^{0x} = 1; \ y_{2} = e^{-2x}; \ y_{3} = e^{2x}

Общее решение: y^{*} = C_{1}y_{1} + C_{2}y_{2} + C_{3}y_{3} = C_{1} + C_{2}e^{-2x} + C_{3}e^{2x}

2) \ \widetilde{y}: \ f(x) = 24e^{2x} - 4\cos 2x + 8\sin 2x

Здесь  f_{1}(x) = 24e^{2x}; \ f_{2}(x) = -4\cos 2x + 8\sin 2x

Контрольные числа: \alpha_{1} = 2 = k_{3} — является корнем характеристического уравнения; \alpha_{2} = 0 \pm 2i \neq k_{1,2,3} — не является корнем характеристического уравнения;

Тогда \widetilde{y}_{1} = Axe^{2x} и \widetilde{y}_{2} = e^{0x}(B\cos 2x + C\sin 2x) = B\cos 2x + C\sin 2x

\widetilde{y} = \widetilde{y}_{1} + \widetilde{y}_{2} =Axe^{2x} + B\cos 2x + C\sin 2x

\widetilde{y}' = Ae^{2x} + 2Axe^{2x} -2B\sin 2x + 2C\cos 2x

\widetilde{y}'' = 4Ae^{2x} + 4Axe^{2x} - 4B\cos 2x - 4C\sin 2x

\widetilde{y}''' = 12Ae^{2x} + 8Axe^{2x} + 8B\sin 2x - 8C\cos 2x

Находим неизвестные коэффициенты A, \ B, \ C методом неопределенных коэффициентов:

12Ae^{2x} + 8Axe^{2x} + 8B\sin 2x - 8C\cos 2x - 4(Ae^{2x} + 2Axe^{2x} -2B\sin 2x + 2C\cos 2x) = 24e^{2x} - 4\cos 2x + 8\sin 2x

8Ae^{2x} + 16B\sin 2x - 16C\cos 2x = 24e^{2x} - 4\cos 2x + 8\sin 2x

Коэффициенты около e^{2x}:

8A = 24; \ A = 3

Коэффициенты около \sin 2x:

16B = 8; \ B = \dfrac{1}{2}

Коэффициенты около \cos 2x:

-16C = -4; \ C = \dfrac{1}{4}

Таким образом, \widetilde{y} =3xe^{2x} + \dfrac{1}{2} \cos 2x + \dfrac{1}{4} \sin 2x

Общее решение заданного уравнения:

y = y^{*} + \widetilde{y} = C_{1} + C_{2}e^{-2x} + C_{3}e^{2x} + 3xe^{2x} + \dfrac{1}{2} \cos 2x + \dfrac{1}{4} \sin 2x

ответ: y = C_{1} + C_{2}e^{-2x} + C_{3}e^{2x} + 3xe^{2x} + \dfrac{1}{2} \cos 2x + \dfrac{1}{4} \sin 2x

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота