В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
7chappe
7chappe
07.07.2021 02:13 •  Математика

помаги мен
Математика
Функция

Показать ответ
Ответ:
Sdq2
Sdq2
15.05.2022 01:04
1.Уравнение
85:х=17
x= 85:17
x=5

Проверка:
85:5=17

2.Уравнение
в*27= 459
в=459:27
в= 17

Проверка:
17*27=459

3.Уравнение
(x+74)-91=35
x+74+91=35
x+74= 35+91
x+74= 126
x= 52

Проверка:
(52+74)-91=35

4.Уравнение

54-(Х-19)=38
54-x+19=38
x-19= 54-38
x-19= 16
x= 16 +19
x= 35

Проверка:
54-(35-19)=38

5.Уравнение
Х-479=164
x= 164+479
x= 643

Проверка:
643-479= 164

6.Уравнение
62-(х-23)=34
62-x+23=34
x-23= 62-34
x-23= 28
x= 28+23
x=51

Проверка:
62-(51-23)=34

7 . Уравнение
(х+83)-92+45. ГДЕ РАВНО??

8. Уравнение
Х*43=2451
x= 2451:43
x= 57

Проверка:
57*43=2451

Надеюсь
0,0(0 оценок)
Ответ:
lolmol
lolmol
06.05.2022 09:19

Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили! " Вычисление пределов методом подстановки Пример 1. Найти предел функции Lim((x^2-3*x)/(2*x+5),x=3). Решение: Такого сорта примеры по теории вычисляют обычной подстановкой предел функции Предел равен 18/11. Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные. Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности Пример 2. Найти предел функции Lim((x^2+2x)/(4x^2+3x-4),x=infinity). Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности предел Простая подстановка значения к которому следует переменная найти пределов не получаем неопределенность вида бесконечность разделить на бесконечность. Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции граница Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей предел функции Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю. Формулами предел можно записать так предел, формула Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности Следующий тип пределов касается поведения функций возле нуля. Пример 3. Найти предел функции Lim((x^2+3x-5)/(x^2+x+2), x=0). Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел предел функции Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим вычисления предела что предел равен 2,5. Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции. Предел с неопределенностью типа 0/0 и методы его вычислений Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции. Рассмотрим для наглядности несколько примеров. Пример 4. Найти предел функции Lim((3x^2+10x+7)/(x+1), x=-1). Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность ви

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота