Пусть собственная скорость лодки x [км/ч], тогда скорость лодки по течению x+2 [км/ч] и против течения x-2 [км/ч]. Время, затраченное на первый отрезок пути: 16/(x-2) [ч], на второй отрезок пути: 12/(x+2) [ч]. Общее время в пути: 16/(x-2) + 12/(x+2) = 3 [ч] x <>2 и x <> -2, домножаем обе части уравнения на (x+2)*(x-2), получаем: 16*(x+2) + 12*(x-2) = 3*(x+2)*(x-2) 16*x + 32 + 12*x - 24 = 3* x^2 - 12, где x^2 = x*x 28*x + 8 = 3* x^2 - 12 3*x^2 - 28*x - 20 = 0 Дискриминант: D = b^2 - 4*a*c = 28*28 - 4*3*(-20) = 1024 = 32^2 x1 = (-b + sqrt(D))/(2*a) = (28 + 32) / 6 = 10 [км/ч] x2 = (-b - sqrt(D))/(2*a) = (28 - 32) / 6 = -2/3 [км/ч] .
Пусть скорость лодки х км/ч, тогда по течению она плыла 12/(х+2) часа, а против течения 16/(х-2). На весь путь лодка затратила 3 часа. Получаем уравнение: 12/(х+2)+16/(х-2)=3 (28х+8)/((х+2)(х-2))=3 (28х+8)/( х^2-4)=3 Умножим обе части уравнения на (x^2-4): 28x+8=3(x^2-4) 28x+8-3x^2+12=0 -3x^2+28x+20=0 Найдем дискриминант квадратного уравнения: D = b^2 - 4ac = 28^2 - 4·(-3)·20 = 784 + 240 = 1024 Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: Х1=(-28 -√1024)/2*(-3)=(-28-32)/(-)6=-60/(-6)=10 Х2=(-28 +√1024)/2*(-3)=(-28+32)/(-)6=4/(-6)=- 2/3
Так как скорость не может быть отрицательной то х=10 км/ч ответ: скорость лодки 10 км/ч
Время, затраченное на первый отрезок пути: 16/(x-2) [ч],
на второй отрезок пути: 12/(x+2) [ч].
Общее время в пути: 16/(x-2) + 12/(x+2) = 3 [ч]
x <>2 и x <> -2, домножаем обе части уравнения на (x+2)*(x-2), получаем:
16*(x+2) + 12*(x-2) = 3*(x+2)*(x-2)
16*x + 32 + 12*x - 24 = 3* x^2 - 12, где x^2 = x*x
28*x + 8 = 3* x^2 - 12
3*x^2 - 28*x - 20 = 0
Дискриминант: D = b^2 - 4*a*c = 28*28 - 4*3*(-20) = 1024 = 32^2
x1 = (-b + sqrt(D))/(2*a) = (28 + 32) / 6 = 10 [км/ч]
x2 = (-b - sqrt(D))/(2*a) = (28 - 32) / 6 = -2/3 [км/ч] .
Получаем уравнение:
12/(х+2)+16/(х-2)=3
(28х+8)/((х+2)(х-2))=3
(28х+8)/( х^2-4)=3
Умножим обе части уравнения на (x^2-4):
28x+8=3(x^2-4)
28x+8-3x^2+12=0
-3x^2+28x+20=0
Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = 28^2 - 4·(-3)·20 = 784 + 240 = 1024
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
Х1=(-28 -√1024)/2*(-3)=(-28-32)/(-)6=-60/(-6)=10
Х2=(-28 +√1024)/2*(-3)=(-28+32)/(-)6=4/(-6)=- 2/3
Так как скорость не может быть отрицательной то х=10 км/ч
ответ: скорость лодки 10 км/ч