В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
33708
33708
20.01.2023 17:43 •  Математика

Помагите в 6упражнением



По

Показать ответ
Ответ:
Biszkopt99
Biszkopt99
22.01.2022 09:31
"Не во всех столбцах не все клетки черные"
                      р а в н о с и л ь н о
   "Не во всех столбцах есть белые клетки"

Значит в каких-то столбцах должны быть ТОЛЬКО чёрные клетки.

При этом, например, комбинация:

Ч Б Б
Ч Б Ч
Ч Б Б – удовлетворительная,

здесь "не во всех столбцах есть белые клетки"

значит утверждения (б), (г) и (д) – ложные.

Комбинация:

Ч Б Б
Ч Б Ч
Ч Ч Б – тоже удовлетворительная,

здесь "не во всех столбцах есть белые клетки"

значит утверждение (в) – ложное.

Поскольку не во всех столбцах есть белые клетки, то значит в каком-то столбце белых клеток – нет, стало быть всегда будет такой столбец, в котором нет белых клеток, т.е. ЧЁРНЫЙ стобец,
а поэтому, утверждение (а) – ВЕРНОЕ.

О т в е т : (а) есть столбец из черных клеток.
0,0(0 оценок)
Ответ:
Nady2106
Nady2106
07.04.2020 05:59

Докажем с математической индукций 

база 1 верна 

теперь переход n->n+1

\begin{lgathered}1^3+2^3+3^3+...n^3=\frac{n^2(n+1)^2}{4}\\\end{lgathered}13+23+33+...n3=4n2(n+1)2

переход

\begin{lgathered}1^3+2^3+3^3+...n^3+(n+1)^3=\frac{(n+1)^2(n+2)^2}{4}\\\end{lgathered}13+23+33+...n3+(n+1)3=4(n+1)2(n+2)2

 так как  предыдущий ряд равен \frac{n^2(n+1)^2}{4}4n2(n+1)2

 то нужно доказать что \begin{lgathered}\frac{(n+1)^2*n^2}{4}+(n+1)^3=\frac{(n+1)^2(n+2)^2}{4}\\\end{lgathered}4(n+1)2∗n2+(n+1)3=4(n+1)2(n+2)2

докажем 

\begin{lgathered}\frac{(n+1)^2*n^2}{4}+(n+1)^3=\frac{(n+1)^2(n+2)^2}{4}\\ \frac{(n+1)^2*n^2+4(n+1)^3}{4}=\frac{(n+1)^2*(n+2)^2}{4}\\ \frac{(n+1)^2(n^2+4(n+1))}{4}=\frac{(n+1)^2(n+2)^2}{4}\\ \frac{(n+1)^2(n+2)^2}{4}=\frac{(n+1)^2(n+2)^2}{4}\\\end{lgathered}4(n+1)2∗n2+(n+1)3=4(n+1)2(n+2)24(n+1)2∗n2+4(n+1)3=4(n+1)2∗(n+2)24(n+1)2(n2+4(n+1))=4(n+1)2(n+2)24(n+1)2(n+2)2=4(n+1)2(n+2)2

Доказано

2)\begin{lgathered}1^3+3^3+5^3...+(2n-1)^3=n^2(2n^2-1)\\ n=1\ verno\\ n->n+1\\ 1^3+3^3+5^3...(2n-1)^3+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ n^2(2n^2-1)+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ (n+1)^2(2n^2+4n+1)=(n+1)^2(2n^2+4n+1)\end{lgathered}13+33+53...+(2n−1)3=n2(2n2−1)n=1 vernon−>n+113+33+53...(2n−1)3+(2n+1)3=(n+1)2(2(n+1)2−1)n2(2n2−1)+(2n+1)3=(n+1)2(2(n+1)2−1)(n+1)2(2n2+4n+1)=(n+1)2(2n2+4n+1)

Доказано

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота