Обозначим вершины треугольника АВС, основание высоты - Н. Длина окружности =2 π r 2 п r=50 π Коротко запись задачи выглядит так: r=50п:2п=25 32-25=7 Р= 2√(25²-7²)+2√(32²+24²)=128см Подробно: Высота равнобедренного треугольника - срединный перпендикуляр. Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров. Так как радиус меньше высоты треугольника, центр лежит на этой высоте. Обозначим центр О. Расстояние от вершины треугольника В до центра окружности О равно R Расстояние ОН от центра окружности до середины основания треугольника АВС 32-25=7 см Соединим центр О с вершиной угла основания. Получим треугольник АОН. АО= радиусу и равна 25 см Найдем половину основания по формуле Пифагора из треугольника АОН АН=√(25²-7²)=24 см Основание треугольникаАС равно 2*24=48см Из треугольника АВН найдем боковую сторону треугольника АВ АВ=√(32²+24²)=40смВС=АВ=40 см Периметр Δ АВС Р=2·40+48=128 см
1) Площадь основания (ромба) So = a²sin 60° = 36*√3/2 = 18√3 см².
Проекция высоты боковой грани на основание - это половина высоты h основания: (h/2) = asin 60°/2 = 6*√3/(2*2) = 3√3/2 см.
Так как угол наклона боковой грани к основанию равен 45 градусов, то высота H пирамиды равна (h/2).
Отсюда находим объём пирамиды:
V = (1/3)SoH = (1/3)*(18√3)*(3√3/2) = 27 см³.
2) Проекция бокового ребра на основание равна стороне основания.
Площадь основания равна: So = a²3√3/2 = 1*3√3/2 = 3√3/2.
Объём пирамиды V = (1/3)SoH. Отсюда находим высоту пирамиды: Н = 3V/So = 3*6/(3√3/2) = 4√3.
Тогда боковое ребро L = 4√3*√2 = 4√6.
Длина окружности =2 π r
2 п r=50 π
Коротко запись задачи выглядит так:
r=50п:2п=25
32-25=7
Р= 2√(25²-7²)+2√(32²+24²)=128см
Подробно:
Высота равнобедренного треугольника - срединный перпендикуляр.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров. Так как радиус меньше высоты треугольника, центр лежит на этой высоте. Обозначим центр О.
Расстояние от вершины треугольника В до центра окружности О равно R
Расстояние ОН от центра окружности до середины основания треугольника АВС
32-25=7 см
Соединим центр О с вершиной угла основания. Получим треугольник АОН.
АО= радиусу и равна 25 см
Найдем половину основания по формуле Пифагора из треугольника АОН
АН=√(25²-7²)=24 см
Основание треугольникаАС равно 2*24=48см
Из треугольника АВН найдем боковую сторону треугольника АВ
АВ=√(32²+24²)=40смВС=АВ=40 см
Периметр Δ АВС
Р=2·40+48=128 см