Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр.
А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр).
так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
см ниже
Пошаговое объяснение:
1/ Решение:
x2 - 13x + 20 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-13)2 - 4·1·20 = 169 - 80 = 89
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (13 - √89)/2·1 ≈ 1.7830
x2 = (13 + √89)/2·1 ≈ 11.217
2/ Решение:
7y2 + 12y = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 122 - 4·7·0 = 144 - 0 = 144
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
y1 = (-12 - √144)/2·7 = (-12 - 12)/14 = -24/14 = -12/7 ≈ -1.7142857142857142
y2= (-12 + √144)/2·7 = (-12 + 12)/14 = 0/14 = 0
3.Решение:
t2 - 20 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 02 - 4·1·(-20) = 0 + 80 = 80
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
t1 = (0 - √80)/2·1 = -2√5 ≈ -4.47213595499958
t2 = (0 + √80)/2·1 = 2√5 ≈ 4.47213595499958
4, Решение:
3x2 - 5x + 2 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-5)2 - 4·3·2 = 25 - 24 = 1
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (5 - √1)/2·3 = (5 - 1)/6 = 4/6 = 2/3 ≈ 0.6666666666666666
x2 = (5 + √1)/2·3 = (5 + 1)/6 = 6/6 = 1
5/ Решение:
3z2 - 20z = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-20)2 - 4·3·0 = 400 - 0 = 400
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
z1 = (20 - √400)/2·3 = (20 - 20)/6 = 0/6 = 0
z2 = (20 + √400)/2·3 = (20+ 20)/6= 40/6 = 20/3 ≈ 6.666666666666667
6/ Решение:
6t2 - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 02 - 4·6·(-1) = 0 + 24 = 24
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
t1 = (0 - √24)/2·6 = -16/√6 ≈ -0.40824829046386296
t2 = (0 + √24)/2·6 = 16/√6 ≈ 0.40824829046386296
7/ Решение:
y2 + 33y - 40 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 332 - 4·1·(-40) = 1089 + 160 = 1249
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
y1 = (-33 - √1249)/2·1 ≈ -34.171
y2 = (-33 + √1249)/2·1 ≈ 1.1706
8/ Решение:
-2z2 + z= 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 12 - 4·(-2)·0 = 1 - 0 = 1
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
z1 =( -1 - √1)/2·(-2) = (-1 - 1)/-4 = -2/-4 = 0.5
z2 = (-1 + √1)/2·(-2) = (-1 + 1)/-4 = 0/-4 = 0