1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
Оказываемся в точке (-14) (см. рис. 4)
ответ: -14
Примерный итоговый тест по геометрии за курс 7 класса.
Часть 1.
1. Длина отрезка ВС равна 5,3 см, длина отрезка АД в 4 раза больше. Найти разность длин
этих отрезков.
А) 16.9см Б) 26,5см В) 15.9см Г)16.1см
2.Точка М лежит на отрезке KF. Сравните длины отрезков:
А) KM > MF Б) KM = MF В) KF < KM Г) KM < KF
3. Найдите периметр треугольника DCE , если DE равно 11 см, CD на 6 см больше DE, а
отрезок СE в 3 раза больше DE.
А) 61см Б) 79 см В) 49 см Г) 51 см
4. Треугольник с какими сторонами можно начертить?
А) 18; 6; 11 Б) 7; 11; 4 В)25; 12;14 Г)15; 9; 4
5. В треугольнике АВС угол В равен 67°, угол А на 12 ° меньше. Вычислите угол С.
А) 34° Б) 58 ° В ) 108 ° Г) 68°
6 . Углы треугольника АВС относятся как 4 : 5 : 6. Вычислите самый большой угол этого
треугольника.
А) 75 ° Б) 180 ° В) 100 ° Г) 90°
7. Найдите самый маленький угол в треугольнике DKN, если DN< DK <KN.
А) N Б) D В) K Г) все углы равны
8. Один из смежных углов на 44 ° меньше другого. Найдите больший угол.
А) 68 ° Б)112 ° В) 136 ° Г)102°
9. Сумма вертикальных углов равна 104°. Вычислите один из вертикальных углов.
А) 62° Б)26 ° В) 76 ° Г) 52°
10. Выберите верное утверждение. Если две параллельные прямые пересечены
секущей, то
А) накрест лежащие углы равны
Б) смежные углы равны
В) соответственные углы в сумме дают 180 °
Г) односторонние углы равны
11. В прямоугольном треугольнике KMN угол M равен 90 °, угол K равен 64 °. Сравните
стороны треугольника
А) MN < KM Б) KN > MN В) KN = MN Г) KN< KM
Часть 2.
12. Один из углов треугольника в 1,5 раза больше другого угла и на 20 ° больше
третьего угла этого треугольника. Вычислите углы треугольника.
13. Периметр равнобедренного тупоугольного треугольника равен 57 см, разность двух
сторон равна 6 см. Найдите стороны треугольника.
Примерный итоговый тест по алгебре за 7 класс
Часть 1
А1 Запишите на математическом языке:
Утроенное произведение чисел равно квадрату разности этих чисел
А) 3ху = (х-у)3 В) 3ху = х2
-у
2
Б) 3(х+у)= (х-у)2
Г) 3ху = (х-у)2
А2 Найдите значение выражения -3,4 + х при х = - 6,7
А) -3,3 Б) 3,3 В) 10,1 Г) – 10,1
А3 Решите уравнение - 4(2х + 5) = 5 – 3х
А) 5 Б) – 2,3 В) - 5 Г) - 3
А4 Представьте в виде степени частное у25 : у5
А) у20
Б) у5
В) 5 Г) 1
А5 Выполните умножение -5ах3
∙ 3а4
х
4
∙ (-4 а0
х
7
)
А) 60а4
х
14
Б) - 60а5
х
14
В) 60а4
х
84
Г) 60а5
х
14
А6 У выражение 3а2 – 2а +6 – ( 5а2 +7а -3)
А) - 2а
2 +5а + 9 Б) - 2а
2 – 9а + 9 В) 2а
2 – 9а + 9 Г) - 2а
2 +5а + 3
А7 Вычислить значение выражения: (5
7
∙5
4
: 5
10
) ∙ 5
0
А) 5 Б) 1 В) 25 Г) 125
А8 У выражение 6,5х – 1,5(4х – 6) при х = - 3,4
А) – 7,3 Б) 7,3 В) -10,7 Г) 10,7
А9 Вынесите за скобки общий множитель 15а – 5ау
А) 5(3а – 5у) Б) 5а(3 – у) В) 5а( 3а – у) Г) 5а( 3 – 5у)
А10 Преобразуйте в многочлен выражение (2а – 6)2
А) 2а2 – 24а +36 Б) 4а2 – 12а +36 В) 2а2 – 24а -36 Г) 4а2 – 24а +36
А11 Выразите у через х в уравнении: 5х – у = 8
А) у = 8 – 5х Б) у = 5х - 8 В) у = 8 + 5х Г) у = - 8 – 5х
Часть 2
В1
у = - 2х + 3
В2 Решите систему уравнений:
7х – 2у = 15;
2х +у = 9
Пошаговое объяснение:
да било не легко но я справилса