Построить доверительный интервал с вероятностью р=0,96 для дисперсии d(х) случайной величины х, распределенной по нормальному закону, если s 2= 20,аn = 25
Самое большое трёхзначное число равно 999. Но, в в задании есть условие, что цифры числа должны быть различными. Поэтому, числа больше 990 нам не подходят.
Значит, число сотен искомого числа равно 9, число десятков равно 8. Ищем число единиц.
Чтобы число делилось на 6, надо, чтобы оно делилось на 2 (т.е. было чётным) и делилось на 3 одновременно. Чтобы число делилось на 3, сумма его цифр должна делиться на 3.
984 - подходит под все условия задачи.
984 - четное, т.к. оканчивается на чётную цифру (4) и сумма цифр числа делится на 3 (9+8+4=21, 21:3=7).
984
Пошаговое объяснение:
Самое большое трёхзначное число равно 999. Но, в в задании есть условие, что цифры числа должны быть различными. Поэтому, числа больше 990 нам не подходят.
Значит, число сотен искомого числа равно 9, число десятков равно 8. Ищем число единиц.
Чтобы число делилось на 6, надо, чтобы оно делилось на 2 (т.е. было чётным) и делилось на 3 одновременно. Чтобы число делилось на 3, сумма его цифр должна делиться на 3.
984 - подходит под все условия задачи.
984 - четное, т.к. оканчивается на чётную цифру (4) и сумма цифр числа делится на 3 (9+8+4=21, 21:3=7).
x - 2y + 3z = 0 2x - 4y + 6z = 0
2x - y + z = -6 -2x + y - z = 6
-3у + 5z = 6
2x + 3y - z = 0 2x + 3y - z = 0
2x - y + z = -6 -2x + y - z = 6
4y - 2z = 6
Теперь получили 2 уравнения с двумя неизвестными:
-3у + 5z = 6 -12у + 20z = 24
4y - 2z = 6 12y - 6z = 18
14z = 42
z = 42 / 14 = 3
Подставим полученное значение z = 3 в уравнение 4y - 2z = 6:
4y -2*3 = 6
4y = 6 + 6 = 12
y = 12 / 4 = 3.
Полученные значения y и z можно подставить в любое уравнение и найти х:
x - 2y + 3z = 0
x = 2y - 3z
х = 2*3 - 3*3 = 6 - 9 = -3.