Построить графики данных функций, предварительно у и исследовать их:1.y=1/3(x^3-14x^2+49x-36) 2.y=(x+1)(x+8) и все это делиться на x 3.y=1/9x(x-4)^3 4.y=x^3+3x^2-9x+5 5.y=(x-1)(x^2-5x+4)
Добрый день! Давайте решим эту задачу.
Изначально нам дано, что вероятность того, что расход горючего на одну машину не превысит норму в течение рабочего дня, равна 0.6. Задача состоит в том, чтобы найти вероятность перерасхода горючего у определенного количества машин из 8.
а) Вероятность того, что перерасхода горючего будет у 4 машин можно найти с использованием биномиального распределения. Формула для вычисления вероятности перерасхода горючего у k машин из n выглядит следующим образом:
P(k) = C(n, k) * p^k * (1-p)^(n-k),
где P(k) - вероятность перерасхода горючего у k машин, C(n, k) - число сочетаний из n по k (т.е. количество способов выбрать k элементов из n), p - вероятность перерасхода горючего на одну машину, (1-p) - вероятность того, что расход горючего у одной машины не превысит норму.
Применяя эту формулу к нашей задаче, получим:
P(4) = C(8, 4) * 0.6^4 * (1-0.6)^(8-4).
Чтобы вычислить значения в этой формуле, нам понадобятся некоторые дополнительные вычисления:
C(8, 4) = 8! / (4! * (8-4)!) = 70,
0.6^4 = 0.1296, и
(1-0.6)^(8-4) = 0.4^4 = 0.0256.
Подставив все значения в формулу, получаем:
P(4) = 70 * 0.1296 * 0.0256 ≈ 0.068.
Таким образом, вероятность того, что у 4 машин перерасход горючего составит примерно 0.068.
б) Теперь давайте найдем вероятность того, что перерасхода горючего будет не менее, чем у 4 машин. Для этого нам нужно сложить вероятности перерасхода горючего для каждого количества машин от 4 до 8.
P(≥4) = P(4) + P(5) + P(6) + P(7) + P(8).
Мы уже вычислили P(4) в предыдущей части задачи. Теперь остается вычислить остальные значения и сложить их.
2)В 1 %-0,01 чего-то(по задачи,в десятичных дробях).
3)От 1%до 10%-будет обозначаться в десятичных дробях,1%-0,01,
2%-0,02,3%-0,03,4%-0,04,5%-0,05,6%-0,06,7%-0,07,8%-0,08,9%-0,09:НО В 10%-БУДЕТ ОБОЗНАЧАТЬСЯ 0,1,И ТАК ДАЛЕЕ ДО 100%,НАПРИМЕР:11%-0,11,23%-0,23,35%-0,35,46%-0,46,50%-0,5(НУЛЬ УБИРАЕТСЯ:ПРАВИЛО),67%-0,67,78%-0,78,88%-0,88,99%-0,99,100%-1.
4)ЗАДАЧА:НАПРИМЕР,В КЛАССЕ-20 УЧЕНИКОВ,ИЗ НИХ-20%ДЕВОЧЕК,НАЙТИ СКОЛЬКО ДЕВОЧЕК?
1)20%-И ЕСТЬ 0,2(НУЛЬ УБИРАЕТСЯ,ПРАВИЛО).
2)НАХОДИМ:20*0,2=4(ДЕВОЧКИ)
ОТВЕТ:4 ДЕВОЧЕК
Изначально нам дано, что вероятность того, что расход горючего на одну машину не превысит норму в течение рабочего дня, равна 0.6. Задача состоит в том, чтобы найти вероятность перерасхода горючего у определенного количества машин из 8.
а) Вероятность того, что перерасхода горючего будет у 4 машин можно найти с использованием биномиального распределения. Формула для вычисления вероятности перерасхода горючего у k машин из n выглядит следующим образом:
P(k) = C(n, k) * p^k * (1-p)^(n-k),
где P(k) - вероятность перерасхода горючего у k машин, C(n, k) - число сочетаний из n по k (т.е. количество способов выбрать k элементов из n), p - вероятность перерасхода горючего на одну машину, (1-p) - вероятность того, что расход горючего у одной машины не превысит норму.
Применяя эту формулу к нашей задаче, получим:
P(4) = C(8, 4) * 0.6^4 * (1-0.6)^(8-4).
Чтобы вычислить значения в этой формуле, нам понадобятся некоторые дополнительные вычисления:
C(8, 4) = 8! / (4! * (8-4)!) = 70,
0.6^4 = 0.1296, и
(1-0.6)^(8-4) = 0.4^4 = 0.0256.
Подставив все значения в формулу, получаем:
P(4) = 70 * 0.1296 * 0.0256 ≈ 0.068.
Таким образом, вероятность того, что у 4 машин перерасход горючего составит примерно 0.068.
б) Теперь давайте найдем вероятность того, что перерасхода горючего будет не менее, чем у 4 машин. Для этого нам нужно сложить вероятности перерасхода горючего для каждого количества машин от 4 до 8.
P(≥4) = P(4) + P(5) + P(6) + P(7) + P(8).
Мы уже вычислили P(4) в предыдущей части задачи. Теперь остается вычислить остальные значения и сложить их.
P(5) = C(8, 5) * 0.6^5 * (1-0.6)^(8-5),
P(6) = C(8, 6) * 0.6^6 * (1-0.6)^(8-6),
P(7) = C(8, 7) * 0.6^7 * (1-0.6)^(8-7),
P(8) = C(8, 8) * 0.6^8 * (1-0.6)^(8-8).
Подставим значения в эти формулы и вычислим:
C(8, 5) = 8! / (5! * (8-5)!) = 56,
C(8, 6) = 8! / (6! * (8-6)!) = 28,
C(8, 7) = 8! / (7! * (8-7)!) = 8,
C(8, 8) = 8! / (8! * (8-8)!) = 1,
0.6^5 ≈ 0.07776,
0.6^6 ≈ 0.046656,
0.6^7 ≈ 0.0279936,
0.6^8 ≈ 0.01679616,
(1-0.6)^(8-5) = (1-0.6)^3 = 0.4^3 = 0.064,
(1-0.6)^(8-6) = (1-0.6)^2 = 0.4^2 = 0.16,
(1-0.6)^(8-7) = (1-0.6)^1 = 0.4,
(1-0.6)^(8-8) = (1-0.6)^0 = 1.
Теперь подставим все значения в формулу P(≥4):
P(≥4) = P(4) + P(5) + P(6) + P(7) + P(8) =
= 0.068 + 56 * 0.07776 * 0.064 + 28 * 0.046656 * 0.16 + 8 * 0.0279936 * 0.4 + 1 * 0.01679616 * 1 ≈
≈ 0.068 + 0.2152448 + 0.21382176 + 0.1119744 + 0.01679616 ≈ 0.626.
Таким образом, вероятность того, что у не менее, чем у 4 машин будет перерасход горючего, примерно равна 0.626.