Сложение и вычитание десятичных дробей. Эти операции выполняются так же, как и сложение и вычитание целых чисел. Необходимо только записать соответствующие десятичные знаки один под другим. П р и м е р . Умножение десятичных дробей. На первом этапе перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку. Затем применяется следующее правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях. Замечание: до простановки десятичной точки в произведении нельзя отбрасывать нули в конце! П р и м е р . Сумма чисел десятичных знаков в сомножителях равна: 3 + 4 = 7. Сумма цифр в произведении равна 6. Поэтому необходимо добавить один ноль слева: 0197056 и проставить перед ним десятичную точку: 0.0197056. Деление десятичных дробей Деление десятичной дроби на целое число Если делимое меньше делителя, записываем ноль в целой части частного и ставим после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединяем к его целой части следующую цифру дробной части и опять сравниваем полученную целую часть делимого с делителем. Если новое число опять меньше делителя, ставим ещё один ноль после десятичной точки в частном и присоединяем к целой части делимого следующую цифру его дробной части. Этот процесс повторяем до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел. П р и м е р . Разделить 1.328 на 64. Р е ш е н и е : Деление одной десятичной дроби на другую. Сначала переносим десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом. Теперь выполняем деление, как в предыдущем случае. П р и м е р . Разделить 0.04569 на 0.0006. Р е ш е н и е. Переносим десятичные точки на 4 позиции вправо и делим 456.9 на 6:
Множества A и B называются равными, если они состоят из одних и тех же элементов, причем порядок элементов в множествах не существенен. Иными словами, если каждый элемент множества
A является также элементом множества B
, и каждый элемент множества B является также элементом множества A, то A=B
Пошаговое объяснение:
Множества A и B называются равными, если они состоят из одних и тех же элементов, причем порядок элементов в множествах не существенен. Иными словами, если каждый элемент множества
A является также элементом множества B
, и каждый элемент множества B является также элементом множества A, то A=B
В нашем случае равные множества :
1) B1 = {15; 21; 4; 7} ; B4 = {4; 21; 7; 15}; B3 = {21; 7, 15, 4,}; значит
В1=В3=В4
2) B6 = {Всё буквы русского алфавита, n, o, y}; B9 = {Всё буквы кыргызского алфавита}.
Кыргызский алфавит содержит все буквы русского алфавита и n, o, y, значит :
В6= В9