4,2 и 8,4= ( 4,2+8,4)/2=10,6/2=5,3(средние арифметическое)
23,5 и 31,7= (23,5+31,7)/2=55,2/2=27,6(средние арифметическое)
642,4 и 644,2=(642,4+644,2)/2=1286,6/2=643,3(средние арифметическое)
312,3 и 312,9= ( 312,3+312,9)/2=625,2/2=312,6(средние арифметическое)
312,6 и 312,9= ( 312,6+312,9)/2=625,5/2=312,75(средние арифметическое)
27,4 и 33,4= ( 27,4+33,4)/2=60,8/2=30,4 (средние арифметическое)
30,4 и 33,4 = ( 30,4+33,4)/2=63,8/2=31,9 (средние арифметическое)
60,2 и 90,2=(60,2+90,2)/2=150,4/2=75,2(средние арифметическое)
30,2 и 90,2=(30,2+90,2)/2=120,4/2=60,2(средние арифметическое)
Пошаговое объяснение: чтобы узнать средние арифметическое чисел нужно сложить их и разделить на столько чисел , сколько всего чисел , например :
найти средние арифметическое чисел 2,1 и 2,2
всего чисел 2 , значит нужно разделить их на это число.
Поэтому K лежит на отрезке MH.
1.
Рассмотри ∠ACH и ∠ABC:
CA⊥BA и CH⊥BH по условию;
∠ACH = ∠ABC, как углы с взаимно перпендикулярными сторонами.
Поэтому CM = BM, тогда ΔBMC - равнобедренный.
Поэтому ∠MBC = ∠MCB, откуда ∠ACH = ∠MCB (т.к. ∠ACH = ∠MBC).
∠ACK = ∠BCK, как углы при биссектрисе;
∠ACH = ∠MCB;
Тогда ∠ACK - ∠ACH = ∠BCK - ∠MCB;
∠HCK = ∠MCK.
2.
Рассмотрим ΔMCH:
CK - биссектриса MCH, поскольку ∠HCK = ∠MCK;
Тогда справедливо равенство ;
Пусть CM = 5x, тогда CH = 3x;
HM = HK+KM = 3+5 = 8;
ΔMCH - прямоугольный (CH⊥MH ⇒ ∠CHM = 90°);
Тогда по теореме Пифагора получим:
CH²+HM² = CM²;
(3x)²+8² = (5x)²;
9x²+64 = 25x²;
64 = 16x²;
x² = 64:16 = 2²;
x = 2.
CM = 5x = 5·2 = 10;
CH = 3x = 3·2 = 6.
3.
CM = BM = MA;
MA = 10;
AB = 2·MA = 2·10 = 20;
AH = MA-HM = 10-8 = 2.
4.
Рассмотрим ΔCHA:
∠CHA = 90°; AH = 2; CH = 6;
По теореме Пифагора найдём AC:
AC² = CH²+AH² = 6²+2² = 36+4 = 2²·10;
AC = 2√10.
5.
Рассмотрим ΔABC:
∠ACB = 90°; AC = 10√2; AB = 20;
По теореме Пифагора надём BC:
BC² = AB²-AC² = 20²-40 = 400-40 = 6²·10;
BC = 6√10.
6.
Рассмотрим ΔCHK:
∠CHK = 90°; CH = 6; HK = 3;
По теореме Пифагора найдём CK:
CK² = CH²+HK² = 6²+3² = 36+9 = 3²·5;
CK = 3√5.
ответ: AB = 20; BC = 6√10; AC = 2√10; CK = 3√5.
4,2 и 8,4= ( 4,2+8,4)/2=10,6/2=5,3(средние арифметическое)
23,5 и 31,7= (23,5+31,7)/2=55,2/2=27,6(средние арифметическое)
642,4 и 644,2=(642,4+644,2)/2=1286,6/2=643,3(средние арифметическое)
312,3 и 312,9= ( 312,3+312,9)/2=625,2/2=312,6(средние арифметическое)
312,6 и 312,9= ( 312,6+312,9)/2=625,5/2=312,75(средние арифметическое)
27,4 и 33,4= ( 27,4+33,4)/2=60,8/2=30,4 (средние арифметическое)
30,4 и 33,4 = ( 30,4+33,4)/2=63,8/2=31,9 (средние арифметическое)
60,2 и 90,2=(60,2+90,2)/2=150,4/2=75,2(средние арифметическое)
30,2 и 90,2=(30,2+90,2)/2=120,4/2=60,2(средние арифметическое)
Пошаговое объяснение: чтобы узнать средние арифметическое чисел нужно сложить их и разделить на столько чисел , сколько всего чисел , например :
найти средние арифметическое чисел 2,1 и 2,2
всего чисел 2 , значит нужно разделить их на это число.
Поэтому K лежит на отрезке MH.
1.
Рассмотри ∠ACH и ∠ABC:
CA⊥BA и CH⊥BH по условию;
∠ACH = ∠ABC, как углы с взаимно перпендикулярными сторонами.
Медиана прямоугольного треугольника, проведённая к гипотенузе, равна половине гипотенузы.Поэтому CM = BM, тогда ΔBMC - равнобедренный.
Углы при основании равнобедренного треугольника равны.Поэтому ∠MBC = ∠MCB, откуда ∠ACH = ∠MCB (т.к. ∠ACH = ∠MBC).
∠ACK = ∠BCK, как углы при биссектрисе;
∠ACH = ∠MCB;
Тогда ∠ACK - ∠ACH = ∠BCK - ∠MCB;
∠HCK = ∠MCK.
Биссектриса треугольника делит сторону треугольника на отрезки, пропорциональные прилежащим сторонам.2.
Рассмотрим ΔMCH:
CK - биссектриса MCH, поскольку ∠HCK = ∠MCK;
Тогда справедливо равенство ;
Пусть CM = 5x, тогда CH = 3x;
HM = HK+KM = 3+5 = 8;
ΔMCH - прямоугольный (CH⊥MH ⇒ ∠CHM = 90°);
Тогда по теореме Пифагора получим:
CH²+HM² = CM²;
(3x)²+8² = (5x)²;
9x²+64 = 25x²;
64 = 16x²;
x² = 64:16 = 2²;
x = 2.
CM = 5x = 5·2 = 10;
CH = 3x = 3·2 = 6.
3.
CM = BM = MA;
MA = 10;
AB = 2·MA = 2·10 = 20;
AH = MA-HM = 10-8 = 2.
4.
Рассмотрим ΔCHA:
∠CHA = 90°; AH = 2; CH = 6;
По теореме Пифагора найдём AC:
AC² = CH²+AH² = 6²+2² = 36+4 = 2²·10;
AC = 2√10.
5.
Рассмотрим ΔABC:
∠ACB = 90°; AC = 10√2; AB = 20;
По теореме Пифагора надём BC:
BC² = AB²-AC² = 20²-40 = 400-40 = 6²·10;
BC = 6√10.
6.
Рассмотрим ΔCHK:
∠CHK = 90°; CH = 6; HK = 3;
По теореме Пифагора найдём CK:
CK² = CH²+HK² = 6²+3² = 36+9 = 3²·5;
CK = 3√5.
ответ: AB = 20; BC = 6√10; AC = 2√10; CK = 3√5.