В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Построй график.
Алгебра 9 класс


Построй график.Алгебра 9 класс

Показать ответ
Ответ:
ler2131mold
ler2131mold
14.03.2023 00:39
Поскольку весы именно чашечные, то задача нахождения фальшивой монеты из N сводится к бинарному поиску - мы каждый раз делим исходную кучку пополам (или на три части, если пополам не делится), определяем ту, которая легче, затем поступаем с ней аналогично. И т.д. пока сравнение не сведется к 2-м монетам - более легкая из них и есть искомая. При этом для N монет нам понадобится log2(N) взвешиваний. Если N не степень двойки, то округление идет до ближайшей СЛЕДУЮЩЕЙ. Т.о. в нашем примере log2(N) = 4. Откуда N = 2^4 = 16. 16 монет.
0,0(0 оценок)
Ответ:
0Assistant0
0Assistant0
02.08.2020 07:15

Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:

а + b + с = 15   [1]

По свойству арифметической прогрессии:

b - а = с - b

2b = а + с   подставим в уравнение [1], получим:

2b + b = 15

3b = 15

b = 5 - второй член арифметической прогрессии.

Тогда сумма первого и третьего членов:

а + с = 15 - 5

а + с = 10   ⇒   c = 10 - a

Переходим к геометрической прогрессии. По условию:

первый член = а + 1

второй член = b + 3 = 5 + 3 = 8

третий член = с + 9 = 10 - a + 9 = 19 - a

По свойству геометрической прогрессии:

\displaystyle\tt \frac{8}{a+1}= \frac{19-a}{8}; \ \ \ \ a\neq-1\\\\\\ 8\cdot8=(a+1)(19-a)\\\\64=19a-a^2+19-a\\\\a^2-18a+45=0\\\\D=324-180=144=12^2\\\\a_1=\frac{18-12}{2}=3

\displaystyle\tt a_2=\frac{18+12}{2}=15   не удовл.условию, так как искомая геометрическая прогрессия возрастающая.

Получили а = 3, тогда с = 10 - а = 10 - 3 = 7

Итак, первые три члена арифметической прогрессии: 3; 5; 7.

Найдем три первых члена геометрической прогрессии:

первый член = а + 1 = 3 + 1 = 4

второй член = 8

третий член = с + 9 = 7 + 9 = 16

Искомая геометрическая прогрессия: 4; 8; 16; ...

Найдем сумму 7 первых членов.

b₁ = 4  - первый член

q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии

Искомая сумма:

\tt S_7=\cfrac{b_1(q^n-1)}{q-1}= \cfrac{4(2^7-1)}{2-1}=4\cdot127=508

ответ: 508

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота