1) у=3+2х-x²; производная: y ' = 2-2x; 2-2x=0; x = 1; y(1)=3+2*1-1² = 4; Функция не является монотонной. Одна точка экстремума: x = 1; у=4; производная в этой точке меняет знак с + на - ; это точка максимума функции. Функция возрастающая на интервале x є (-∞;1). Функция убывающая на интервале x є (1; +∞). строим график: пересечение с осью OY: 3+2х-x²=0; x1=-1; x2=3; строим по точкам: x= -2; y= -5; x= -1; y= 0; x= 0; y= 3; x= 1; y= 4; x= 2; y= 3; x= 3; y= 0; x= 4; y= -5;
2) у=3х²-x³; производная: y ' = 6x -3x²; 6x -3x²=0; x1 = 0; x2 = 2; y(0)= 3х²-x³ = 0; y(2)= 3*2²-2³ = 4; Функция не является монотонной. Две точки экстремума: (0; 0) производная в этой точке меняет знак с - на + ; это точка локального минимума функции; и (2; 4) производная в этой точке меняет знак с + на - ; это точка локального максимума функции. Функция убывающая на интервале x є (-∞; 0) U (2; +∞). Функция возрастающая на интервале x є (0; 2). строим график: пересечение с осью OY: 3х²-x³=0; x1=0; x2=3; строим по точкам: x= -1; y= 4; x= 0; y= 0; x= 1; y= 2; x= 2; y= 4; x= 3; y= 0;
3) у=6х+x³; производная: y ' = 3x²+6; 3x²+6 = 0; Нет корней. производная всегда больше нуля. Функция является монотонной. Функция возрастающая на интервале x є (-∞; +∞). строим график: пересечение с осью OY: 6х+x³=0; x=0; строим по точкам: x= -1; y= -7; x= -0.75; y= -4.92; x= -0.5; y= -3.13; x= -0.25; y= -1.52; x= 0; y= 0; x= 0.25; y= 1.52; x= 0.5; y= 3.13; x= 0.75; y= 4.92; x= 1; y= 7;
Для заданий 1 и 2 необходим рисунок, поэтому можно лишь догадываться, о каких фигурах идёт речь. Условимся обозначать степень: R^2 = R*R, 4^2 = 4*4 = 16 и т.д.
1) Предположим, что четверти окружностей проведены внутри квадрата так, что их радиус = половине стороны квадрата, а центры окружностей совпадают с вершинами квадрата. Внутри квадрата получится фигура, напоминающая карточную масть "буби". Площадь этой фигуры требуется определить? Сторона квадрата = 6 см, радиус окружности R = 6/2 = 3 см. Площадь квадрата = 6*6 = 36 см2. Площадь круга s = пR^2 = п*6*6 = 36п , где п=3,1415926... (число "пи"). Искомая площадь = площадь квадрата минус площадь четырёх четвертинок круга = площадь квадрата минус площадь целого круга: S = (2R)*(2R) - пR^2 = 4R^2 - пR^2 = R^2(4-п) = 6*6(4-п) = 36(4 - п). Приблизительное значение будет S = 36(4 - 3,14) = 36*0,86 = 36,96 см2.
2) Если начертить указанные полуокружности радиуса R = 2,5, то внутри квадрата получится "цветочек" из 4-х одинаковых лепестков. Предположим, что требуется найти площадь именно этого "цветочка". Найдём площадь одного лепестка. Разобьём данный квадрат на 4 квадрата со стороной a = 5/2 = 2,5 см. Рассмотрим один из этих квадратов. Он разобьётся на 3 не пересекающиеся области, обозначим их A + B (лепесток) + A: площадь квадрата a^2 = A+B+A. Площадь четверти круга = пR^2/4 и состоит из областей A и B, т.е. пR^2/4 = A + B. Если вычтем эту область (A+B) из квадрата, то получим область A: A = a^2 - пR^2/4. Обл. В, т.е. лепесток получим, если из четверти круга вычтем обл. А: В = пR^2/4 - А = пR^2/4 - (a^2 - пR^2/4) = пR^2/4 - a^2 + пR^2/4) = 2пR^2/4 - a^2 = приблизительно = 3,14*2,5^2/2-2,5^2 = 2,5^2(3,14/2 – 1) = 6,25*(1,57 - 1) = 6,25*0,57 = 3,5625 см2.
Вся фигура состоит из 4 лепестков, поэтому S = (2пR^2/4 - a^2)*4 = 3,5625*4 = 14,25 см2.
3) Площадь фигуры состоит из квадрата со стороной а = 4 см. и четырёх полукругов радиуса R = a/2 = 2 см., т.е. из квадрата и двух полных кругов: S = a^2 + 2*пR^2 = 4*4 + 2* п* 2*2 = 16 + 8п = приблизительно = 16 + 8*3,14 = 16 + 25,12 = 41,12 см2.
Периметр состоит из 4 полуокружностей = 2 окружностей. Р = 2*2пR = 8п приблизительно = 8*3,14 = 25, 12 см.
у=3+2х-x²;
производная:
y ' = 2-2x;
2-2x=0; x = 1;
y(1)=3+2*1-1² = 4;
Функция не является монотонной.
Одна точка экстремума: x = 1; у=4; производная в этой точке меняет знак с + на - ; это точка максимума функции.
Функция возрастающая на интервале x є (-∞;1).
Функция убывающая на интервале x є (1; +∞).
строим график:
пересечение с осью OY:
3+2х-x²=0;
x1=-1; x2=3;
строим по точкам:
x= -2; y= -5;
x= -1; y= 0;
x= 0; y= 3;
x= 1; y= 4;
x= 2; y= 3;
x= 3; y= 0;
x= 4; y= -5;
2)
у=3х²-x³;
производная:
y ' = 6x -3x²;
6x -3x²=0; x1 = 0; x2 = 2;
y(0)= 3х²-x³ = 0; y(2)= 3*2²-2³ = 4;
Функция не является монотонной.
Две точки экстремума:
(0; 0) производная в этой точке меняет знак с - на + ; это точка локального минимума функции;
и (2; 4) производная в этой точке меняет знак с + на - ; это точка локального максимума функции.
Функция убывающая на интервале x є (-∞; 0) U (2; +∞).
Функция возрастающая на интервале x є (0; 2).
строим график:
пересечение с осью OY:
3х²-x³=0;
x1=0; x2=3;
строим по точкам:
x= -1; y= 4;
x= 0; y= 0;
x= 1; y= 2;
x= 2; y= 4;
x= 3; y= 0;
3)
у=6х+x³;
производная:
y ' = 3x²+6;
3x²+6 = 0; Нет корней.
производная всегда больше нуля.
Функция является монотонной.
Функция возрастающая на интервале x є (-∞; +∞).
строим график:
пересечение с осью OY:
6х+x³=0;
x=0;
строим по точкам:
x= -1; y= -7;
x= -0.75; y= -4.92;
x= -0.5; y= -3.13;
x= -0.25; y= -1.52;
x= 0; y= 0;
x= 0.25; y= 1.52;
x= 0.5; y= 3.13;
x= 0.75; y= 4.92;
x= 1; y= 7;
Для заданий 1 и 2 необходим рисунок, поэтому можно лишь догадываться, о каких фигурах идёт речь. Условимся обозначать степень: R^2 = R*R, 4^2 = 4*4 = 16 и т.д.
1) Предположим, что четверти окружностей проведены внутри квадрата так, что их радиус = половине стороны квадрата, а центры окружностей совпадают с вершинами квадрата. Внутри квадрата получится фигура, напоминающая карточную масть "буби". Площадь этой фигуры требуется определить?
Сторона квадрата = 6 см, радиус окружности R = 6/2 = 3 см. Площадь квадрата = 6*6 = 36 см2. Площадь круга s = пR^2 = п*6*6 = 36п , где п=3,1415926... (число "пи"). Искомая площадь = площадь квадрата минус площадь четырёх четвертинок круга = площадь квадрата минус площадь целого круга: S = (2R)*(2R) - пR^2 = 4R^2 - пR^2 = R^2(4-п) = 6*6(4-п) = 36(4 - п). Приблизительное значение будет S = 36(4 - 3,14) = 36*0,86 = 36,96 см2.
2) Если начертить указанные полуокружности радиуса R = 2,5, то внутри квадрата получится "цветочек" из 4-х одинаковых лепестков. Предположим, что требуется найти площадь именно этого "цветочка".
Найдём площадь одного лепестка. Разобьём данный квадрат на 4 квадрата со стороной a = 5/2 = 2,5 см. Рассмотрим один из этих квадратов. Он разобьётся на 3 не пересекающиеся области, обозначим их A + B (лепесток) + A: площадь квадрата a^2 = A+B+A. Площадь четверти круга = пR^2/4 и состоит из областей A и B, т.е. пR^2/4 = A + B. Если вычтем эту область (A+B) из квадрата, то получим область A: A = a^2 - пR^2/4. Обл. В, т.е. лепесток получим, если из четверти круга вычтем обл. А: В = пR^2/4 - А = пR^2/4 - (a^2 - пR^2/4) = пR^2/4 - a^2 + пR^2/4) = 2пR^2/4 - a^2 = приблизительно = 3,14*2,5^2/2-2,5^2 = 2,5^2(3,14/2 – 1) = 6,25*(1,57 - 1) = 6,25*0,57 = 3,5625 см2.
Вся фигура состоит из 4 лепестков, поэтому S = (2пR^2/4 - a^2)*4 = 3,5625*4 = 14,25 см2.
3) Площадь фигуры состоит из квадрата со стороной а = 4 см. и четырёх полукругов радиуса R = a/2 = 2 см., т.е. из квадрата и двух полных кругов: S = a^2 + 2*пR^2 = 4*4 + 2* п* 2*2 = 16 + 8п = приблизительно = 16 + 8*3,14 = 16 + 25,12 = 41,12 см2.
Периметр состоит из 4 полуокружностей = 2 окружностей. Р = 2*2пR = 8п приблизительно = 8*3,14 = 25, 12 см.