1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
1.А) Уравнением называется равенство, содержащее одно или несколько неизвестных, значение которых необходимо найти.
2. верный ответ Значение переменной, при котором уравнение обращается в верное равенство.
среди предложенных не нашел.
3. линейным называют уравнение, в котором переменная /или переменные/ входят в первой степени, не равны нулю. можем еще так сказать
это уравнение вида ах+b=c
ax+by=c , где a, b, c - некоторые числа, х и у -переменные. причем а≠0, если речь об уравнении с двумя переменными, то а≠0;b≠0.
4. квадратное - это уравнение вида ах²+bx+c=0, где а,b,с - некоторые числа, причем а≠0, х и у-переменные.
5. Неравенство вида ах+b<0 (ах+b≤0, ах+b>0, ах+b≥0).где а≠0.
6. А) Уравнение имеет два равных действительных корня. но при условии, что решаем уравнение в области действительных чисел. иначе ответ Е.
7. А) Уравнение имеет два различных действительных корня. если речь о решении кв. уравнения в области действительных чисел.
иначе ответ Е.
8. А) Уравнение не имеет действительных корней.
9.D=b²-4ас
10. А) Уравнения, имеющие одно и то же множество решений
11. 7х-8=2х-3⇒А)х=1
12. 3-4х=5+8х⇒12х=-2, х=-1/6, верного ответа нет.
13. 7-х=-4+10х; х=1
14. 4х-4=6+3х⇒А)х=10
15. А) -0.5
16. 7-3х-3=х-1⇒А)1.25
17. -15+3х=2х-19⇒А)-4
18. 3-2х<5-3х⇒А) x<2
19. 5х+6>3х-2⇒А) x>-4
20. 3х-5≥23-4х⇒А) x≥4
21. По Виету А) 4;-2
22. 3х²-2х-1=0−1
здесь два ответа . ноль и 2/3
23. у=х+1 целая прямая ответов. подходят А, С,
24.- нет системы
25.аналогично.
26. аналогично
27 нет
28. 10х²-х+1=0 А) Не имеет действительных корней
29 нет уравнения
30нет неравенства. но больше половины, как требуют правила, я решил вам.
bb
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Случай n = 16 разбирается непосредственно.
Пошаговое объяснение:
Не забудь подписку и сердичку