Решить систему двух уравнений с двумя переменными графически. Для этого нужно найти точки (точку) пересечения двух графиков функций, которые у тебя представленны, а для этого их нужно привести (преобразовать немного) и построить:
х+2у=0 (нужно 《перенести》 в другую часть выражения, за знак равенства х: т.е. от обеих частей выражения (левой от знака равенства и правой) отнять х) 5х+у=-18 (нужно 《перенести》 5х...)
2у=-х (после этого нужно сделать, чтоб слева от знака равенства был только у, т.е. обе части равенства нужно делить на 2) у=-5х-18
у=-х/2 у=-5х-18
Т. к. это линейная функция (прямая) (и первая, и вторая), то строить её можно только по двум произвольным точкам (больше и не надо, чтобы построить прямую).
Точки первой: пусть х=2 у=-2/2=1 Так первая точка первой фунции (2;-1) Аналогично можно найти произвольную вторую точку графика первой функции, пусть, например, (-2;1)
Произвольные точки графика второй функции тоже аналагично можно найти, просто подставив любое значение х и подсчитав: (-3;-3), (-4;2)
Строишь по двум точкам график каждой функции и находишь точку пересечения (общую точку) по полученному графику этих двух прямых. По графику точка пересечения: (-4;2). ответ: (-4;2).
Я тебе в программе нарисовал белым цветом график первой функции (у=-х/2) и синим график второй (у=-5х-18) (просто в школе их надо ещё и подписывать). Поставь 《+》 в комментариях, если получил скриншот программы, если не сложно.
Пусть х - количество заготовленных шариков, тогда (4/9)х шариков продали до представления, 19 шариков продали в антракте, после чего осталось (1/2)х шариков. Уравнение:
х+2у=0 (нужно 《перенести》 в другую часть выражения, за знак равенства х: т.е. от обеих частей выражения (левой от знака равенства и правой) отнять х)
5х+у=-18 (нужно 《перенести》 5х...)
2у=-х (после этого нужно сделать, чтоб слева от знака равенства был только у, т.е. обе части равенства нужно делить на 2)
у=-5х-18
у=-х/2
у=-5х-18
Т. к. это линейная функция (прямая) (и первая, и вторая), то строить её можно только по двум произвольным точкам (больше и не надо, чтобы построить прямую).
Точки первой:
пусть х=2
у=-2/2=1
Так первая точка первой фунции (2;-1)
Аналогично можно найти произвольную вторую точку графика первой функции, пусть, например, (-2;1)
Произвольные точки графика второй функции тоже аналагично можно найти, просто подставив любое значение х и подсчитав:
(-3;-3), (-4;2)
Строишь по двум точкам график каждой функции и находишь точку пересечения (общую точку) по полученному графику этих двух прямых.
По графику точка пересечения: (-4;2).
ответ: (-4;2).
Я тебе в программе нарисовал белым цветом график первой функции (у=-х/2) и синим график второй (у=-5х-18) (просто в школе их надо ещё и подписывать). Поставь 《+》 в комментариях, если получил скриншот программы, если не сложно.
по действиям).
Количество шариков примем за единицу (целое), тогда 1/2 - половина шариков.
1) 1 - 4/9 = 9/9 - 4/9 = 5/9 - оставшаяся часть шариков;
2) 5/9 - 1/2 = 10/18 - 9/18 = 1/18 - часть шариков, равная 19;
3) Находим целое по его части:
19 : 1/18 = 19 · 18/1 = 342 (шт.) - количество заготовленных шариков.
- - - - - - - - - - - - - - - - - - - - - - -
уравнение).
Пусть х - количество заготовленных шариков, тогда (4/9)х шариков продали до представления, 19 шариков продали в антракте, после чего осталось (1/2)х шариков. Уравнение:
(1/2)х = (4/9х) + 19
(1/2)х - (4/9)х = 19
(9/18)х - (8/18)х = 19
(1/18)х = 19
х = 19 : 1/18
х = 19 · 18/1
х = 342
ответ: 342 шарика было изначально.