1) если делитель простое число, то для деления на него необходимо. чтобы он входил в составе делителей хотя бы одного из производных. 2) если а и b при деление 1001 дают одинаковые остатки, то сумма остатков должно делится на 1001, а это не реально , т.к. сумма четное и не может равняться 2002 (остатки <1001). 3) Любое нечетное число на 24 не делится, однако один из любых трех соседних нечетных чисел делится на 3. 4) У простых чисел 2 делителей (сам число и 1), если число кратен 15, то число делителей было бы минимум 3 (1;3;5).
2) если а и b при деление 1001 дают одинаковые остатки, то сумма остатков должно делится на 1001, а это не реально , т.к. сумма четное и не может равняться 2002 (остатки <1001).
3) Любое нечетное число на 24 не делится, однако один из любых трех соседних нечетных чисел делится на 3.
4) У простых чисел 2 делителей (сам число и 1), если число кратен 15, то число делителей было бы минимум 3 (1;3;5).
В прямоугольном параллелепипеде все грани - прямоугольники, все рёбра равны и перпендикулярны основаниям.
Формула диагонали квадрата d=a√2 ⇒
Диагональ АС основания равна 4√2
Из прямоугольного треугольника АА1С по т.Пифагора боковое ребро
АА1=√(А1С²-AC²)=√(81-32)=7 (ед. длины)
-------
Вариант решения.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Измерениями прямоугольного параллелепипеда являются длины трех ребер, исходящих из одной его вершины. Отсюда следует:
D²=a²+b²+c², где а и b- стороны основания, с - боковое ребро.
По условию а=b=4. D=9
81=16+16+c² ⇒
c²=81-32=49
c=7 - длина бокового ребра.