1) Чтобы найти координаты вектора нужно из координат его конца вычесть координаты его начала. Вот есть точки A и B, чтобы найти координаты вектора AB вычитаем из координат точки B координаты точки A: (1-0; 2-(-2); -1-0) = (1;4;-1). Теперь хотим чтобы некоторый вектор CO был равен вектору AB, то есть он тоже должен иметь координаты (1;4;-1). Значит нужно придумать такие координаты точки C, чтобы при вычитании их из координат точки O получилось (1;4;-1). У точки O координаты (0;0;0), т.к. это начало координат. Значит координаты точки C должны быть такими: 0-x=1, 0-y=4, 0-z=-1, отсюда x=-1, y=-4, z=1. То есть координаты точки C (-1;-4;1)
2) Сначала найдем координаты вектора BA: (0-1; -2-2; 0-(-1)) = (-1;-4;1) Есть известное знание: 2 вектора перпендикулярны тогда и только тогда когда выполняется следующее равенство: x1*x2 + y1*y2 + z1*z2 = 0, то есть если сумма перемноженных соответствующих координат этих векторов равна нулю. Значит чтобы вектор BA и вектор u были перпендикулярны должно выполняться равенство -1*x + (-4)*1 + 1*2 = 0. Решаем это уравнение, находим что x = -2.
1) перпендикуляр к y=-x-7 имеет вид у=ax+b где а=1 y=(2x+1)/(x+1)=( 2x+2)/(x+1)-1/(x+1)=2-1/(x+1) y`=1/(x+1)^2 y`=1 при x=x0=0 и при х=x1=-2
1 случай y=(2x+1)/(x+1) в точке x=x0=0 у0=y(x=x0) =(2*0+1)/(0+1)=1 y`=1 касательная имеет вид y-y0=(x-x0)*y` у-1=(х-0)*1 у=х+1 - искомая касательная 2 случай y=(2x+1)/(x+1) в точке x=x1=-2 у1=y(x=x1) =(2*(-2)+1)/((-2)+1)=3 y`=1 касательная имеет вид y-y1=(x-x1)*y` у-3=(х-(-2))*1 у=х+5 - искомая касательная во вложении фрагменты графика, исходной прямой и двух касательных 2) y=1/(2x-3)=(2x-3)^(-1) dy/dx=(2x-3)^(-2)*(-1)*2 y``=(2x-3)^(-3)*(-1)*(-2)*2*2 y```=(2x-3)^(-4)*(-1)*(-2)*(-3)*2*2*2 производная n-го порядка=(2x-3)^(-1-n) * n! * (-2)^n
Теперь хотим чтобы некоторый вектор CO был равен вектору AB, то есть он тоже должен иметь координаты (1;4;-1). Значит нужно придумать такие координаты точки C, чтобы при вычитании их из координат точки O получилось (1;4;-1). У точки O координаты (0;0;0), т.к. это начало координат. Значит координаты точки C должны быть такими: 0-x=1, 0-y=4, 0-z=-1, отсюда x=-1, y=-4, z=1. То есть координаты точки C (-1;-4;1)
2) Сначала найдем координаты вектора BA: (0-1; -2-2; 0-(-1)) = (-1;-4;1)
Есть известное знание: 2 вектора перпендикулярны тогда и только тогда когда выполняется следующее равенство: x1*x2 + y1*y2 + z1*z2 = 0, то есть если сумма перемноженных соответствующих координат этих векторов равна нулю. Значит чтобы вектор BA и вектор u были перпендикулярны должно выполняться равенство -1*x + (-4)*1 + 1*2 = 0. Решаем это уравнение, находим что x = -2.
перпендикуляр к y=-x-7
имеет вид у=ax+b где а=1 y=(2x+1)/(x+1)=( 2x+2)/(x+1)-1/(x+1)=2-1/(x+1) y`=1/(x+1)^2
y`=1 при x=x0=0 и при х=x1=-2
1 случай y=(2x+1)/(x+1) в точке x=x0=0
у0=y(x=x0) =(2*0+1)/(0+1)=1
y`=1
касательная имеет вид
y-y0=(x-x0)*y`
у-1=(х-0)*1
у=х+1 - искомая касательная 2 случай y=(2x+1)/(x+1) в точке x=x1=-2
у1=y(x=x1) =(2*(-2)+1)/((-2)+1)=3
y`=1
касательная имеет вид
y-y1=(x-x1)*y`
у-3=(х-(-2))*1
у=х+5 - искомая касательная во вложении фрагменты графика, исходной прямой и двух касательных
2)
y=1/(2x-3)=(2x-3)^(-1)
dy/dx=(2x-3)^(-2)*(-1)*2
y``=(2x-3)^(-3)*(-1)*(-2)*2*2
y```=(2x-3)^(-4)*(-1)*(-2)*(-3)*2*2*2
производная n-го порядка=(2x-3)^(-1-n) * n! * (-2)^n