Представь,что ты работаешь экскурсоводом.скоро в твой город(посёлок) прибудет иностранная делегация.назови одну-две достопримечательности,которые ты покажешь гостям.объясни свой выбор(составь и запиши текст из двух-трёх предложений).
1)3х=1200+7800 2)у+2958=139*57 3)5000-z=38007:9 зх=9000 у+2958=7923 5000-z=4223 х=9000:3 у=7923-2958 z=4223+5000 х=3000 у=4965 z=9223 Запишем по порядку: 1, ИЛЬЯ -дальше Олега 2. ОЛЕГ -дальше Игоря 3. ИГОРЬ - дальше Романа 4. РОМАН -дальше Кости 5. КОСТЯ - меньше всех. Таким образом - дальше всех был ИЛЬЯ, а ближе всех - КОСТЯ.
Пусть плоскость, проходящая через сторону AD основания ABCD пирамиды SABCD , пересекает боковые рёбра BS и CS соответственно в точках M и N , а плоскость, проходящая через сторону BC , пересекает боковые рёбра AS и DS соответственно в точках P и Q . Плоскости ASD и BPQC проходят через параллельные прямые AD и BC и пересекаются по прямой PQ . Значит, PQ || BC . Аналогично, MN || AD . Предположим, что AM || DN . Тогда BP || CQ . В этом случае две пересекающиеся прямые плоскости ASB соответственно параллельны двум пересекающимся прямым плоскости CSD , значит, эти плоскости параллельны, что невозможно. Таким образом, данные четырёхугольники – трапеции. Кроме того, PQ < AD и MN < BC , поэтому в равных трапециях BPQC и AMND соответственно равны основания BC и AD и основания PQ и MN . В четырехугольнике ABCD противоположные стороны AD и BC равны и параллельны, поэтому ABCD – параллелограмм и
РИС 1.
поэтому PM || AB . Аналогично, QN || CD , поэтому PM || QN , а т.к. PQ || MN , то PMNQ – параллелограмм. Значит, PM = NQ . Пусть отрезки AM и BP пересекаются в точке E , а отрезки CQ и DN – в точке F . Предположим, что AM = CQ и BP = DN . Тогда треугольники PEM и NFQ равны по трём сторонам, поэтому AMP = CQN . Значит, треугольники APM и CQN равны по двум сторонам и углу между ними. Тогда AP = CN , а т.к. AP/AS = DQ/DS , то AS = DS . Аналогично, BS = CS . Пусть O – ортогональная проекция вершины S на плоскость основания ABCD . Тогда OA = OD и OB = OC как ортогональные проекции равных наклонных. Значит, точка O лежит на серединных перпендикулярах к противоположным сторонам AD и BC параллелограмма ABCD . Поскольку параллелограмм ABCD не является прямоугольником, серединные перпендикуляры к двум его противоположным сторонам параллельны. Таким образом, предположение о том, что AM = DN и BP = CQ приводит к противоречию. Остается рассмотреть случай, когда AM = BP и CQ = DN . Рассуждая аналогично, получим, что AS = CS и BS = DS . Тогда точка O принадлежит серединным перпендикулярам к диагоналям AC и BD параллелограмма ABCD , т.е. совпадает с центром параллелограмма ABCD . Далее находим:
зх=9000 у+2958=7923 5000-z=4223
х=9000:3 у=7923-2958 z=4223+5000
х=3000 у=4965 z=9223
Запишем по порядку: 1, ИЛЬЯ -дальше Олега 2. ОЛЕГ -дальше Игоря 3. ИГОРЬ - дальше Романа 4. РОМАН -дальше Кости 5. КОСТЯ - меньше всех. Таким образом - дальше всех был ИЛЬЯ, а ближе всех - КОСТЯ.
ответ: 160√3 / 3
Решение
Пусть плоскость, проходящая через сторону AD основания ABCD пирамиды SABCD , пересекает боковые рёбра BS и CS соответственно в точках M и N , а плоскость, проходящая через сторону BC , пересекает боковые рёбра AS и DS соответственно в точках P и Q . Плоскости ASD и BPQC проходят через параллельные прямые AD и BC и пересекаются по прямой PQ . Значит, PQ || BC . Аналогично, MN || AD . Предположим, что AM || DN . Тогда BP || CQ . В этом случае две пересекающиеся прямые плоскости ASB соответственно параллельны двум пересекающимся прямым плоскости CSD , значит, эти плоскости параллельны, что невозможно. Таким образом, данные четырёхугольники – трапеции. Кроме того, PQ < AD и MN < BC , поэтому в равных трапециях BPQC и AMND соответственно равны основания BC и AD и основания PQ и MN . В четырехугольнике ABCD противоположные стороны AD и BC равны и параллельны, поэтому ABCD – параллелограмм и
РИС 1.
поэтому PM || AB . Аналогично, QN || CD , поэтому PM || QN , а т.к. PQ || MN , то PMNQ – параллелограмм. Значит, PM = NQ . Пусть отрезки AM и BP пересекаются в точке E , а отрезки CQ и DN – в точке F . Предположим, что AM = CQ и BP = DN . Тогда треугольники PEM и NFQ равны по трём сторонам, поэтому AMP = CQN . Значит, треугольники APM и CQN равны по двум сторонам и углу между ними. Тогда AP = CN , а т.к. AP/AS = DQ/DS , то AS = DS . Аналогично, BS = CS . Пусть O – ортогональная проекция вершины S на плоскость основания ABCD . Тогда OA = OD и OB = OC как ортогональные проекции равных наклонных. Значит, точка O лежит на серединных перпендикулярах к противоположным сторонам AD и BC параллелограмма ABCD . Поскольку параллелограмм ABCD не является прямоугольником, серединные перпендикуляры к двум его противоположным сторонам параллельны. Таким образом, предположение о том, что AM = DN и BP = CQ приводит к противоречию. Остается рассмотреть случай, когда AM = BP и CQ = DN . Рассуждая аналогично, получим, что AS = CS и BS = DS . Тогда точка O принадлежит серединным перпендикулярам к диагоналям AC и BD параллелограмма ABCD , т.е. совпадает с центром параллелограмма ABCD . Далее находим:
Рис. 2