Саму задачу можно переформулировать немного по-другому:
Было: Расставить минимальное количество шашек на шахматной доске 8 на 8, так чтобы было невозможно поставить коня так, чтобы он не бил ни одной шашки.Переходит в: расставить на доске минимальное количество коней так, чтобы было невозможно поставить шашку не под удар коня.
Если мы решим вторую задачу, то просто нужно будет заменить коней шашками - и мы получим искомое расположение.
По поводу второй задачи можно заметить, что:
Разные кони должны бить выделенные красным клетки на рисунке ниже.
Отсюда следует, что мы не можем расставить менее, чем 4 * 3 = 12 коней. Если это можно сделать, то задача решится. И да, это получилось сделать (рисунок 2).
Заменяем коней шашками и получаем ответ: 12 коней.
Саму задачу можно переформулировать немного по-другому:
Было: Расставить минимальное количество шашек на шахматной доске 8 на 8, так чтобы было невозможно поставить коня так, чтобы он не бил ни одной шашки.Переходит в: расставить на доске минимальное количество коней так, чтобы было невозможно поставить шашку не под удар коня.Если мы решим вторую задачу, то просто нужно будет заменить коней шашками - и мы получим искомое расположение.
По поводу второй задачи можно заметить, что:
Разные кони должны бить выделенные красным клетки на рисунке ниже.Отсюда следует, что мы не можем расставить менее, чем 4 * 3 = 12 коней. Если это можно сделать, то задача решится. И да, это получилось сделать (рисунок 2).
Заменяем коней шашками и получаем ответ: 12 коней.
ответ: 12 шашек.
Значит, мы можем переставить все числа, так,
чтобы оказалось, что
Введём новые переменные
И будем искать такие комбинации чтобы
и
Начнём с первого требования, оно эквивалентно утверждению, что:
;
;
При правая часть отрицательная, а левая положительна, что не возможно.
Значит, ;
Теперь подставим вместо его значение и будем искать такие комбинации чтобы:
– теперь всегда будет выполняться с
и
Проанализируем второе требование, оно эквивалентно утверждению, что:
;
;
При правая часть отрицательная, а левая положительна, что не возможно.
При но это не подходит по условию.
Значит, ;
Теперь подставим вместо его значение и будем искать такие комбинации чтобы:
– теперь всегда будет выполняться с
– теперь всегда будет выполняться с
Проанализируем последнее требование, оно эквивалентно утверждению, что:
;
;
;
;
;
Сумма всей комбинации – это:
максимум которой достигается при минимальном значении
в знаменателе дроби т.е. при
Тогда сумма всей комбинации
;
О т в в е т : 59 .