Пусть первая цифра а, третья с. Тогда вторая (а + с) / 2. Само число 100а + (а + с) / 2 * 10 + с = 105а + 6с. 102а + 6с делится на 6, поэтому вычтем это. Остается 3а. Так как остаток не нулевой, а - нечетно, и остаток 3а равен 3. Теперь из числа вычтем 99а, так как это делится на 11. Получим 6а + 6с = 6(а + с) = 12 (а + с) / 2. Так как (а + с) / 2 целое число, вычтем 11 (а + с) / 2. Получаем (а + с) / 2 - 3 делится на 11. Но (а + с) / 2 меньше 10, поэтому принимает единственное подходящее значение 6 ((а + с) / 2 - 3 = 0). Тогда получаем три случая: а = 1, с = 5, число 135 а = 3, с = 3, число 333 а = 5, с = 1, число 531 Это все числа, удовлетворяющие условиям
Пошаговое объяснение:
5(x+2)=x-2*(5-x) 3*(1-x)-(2-x)=2 14-(4+2x)=1+x 3-x=1-7*(x+1)
5x+10=1 3-3x-2+x=2 14-4-2x=1+x 3-x=1-7x-7
5x=1-10 1-2x=2 10-2x=1+x 3-x=-6-7x
5x=-9 -2x=2-1 -2x-x=1-10 -x+7x=-6-3
x=9/5 -2x=1 -2x=-9 6x=-9
x=1/2 x=3 x=-3/
100а + (а + с) / 2 * 10 + с = 105а + 6с. 102а + 6с делится на 6, поэтому вычтем это. Остается 3а. Так как остаток не нулевой, а - нечетно, и остаток 3а равен 3. Теперь из числа вычтем 99а, так как это делится на 11. Получим 6а + 6с = 6(а + с) = 12 (а + с) / 2. Так как (а + с) / 2 целое число, вычтем 11 (а + с) / 2. Получаем (а + с) / 2 - 3 делится на 11. Но (а + с) / 2 меньше 10, поэтому принимает единственное подходящее значение 6 ((а + с) / 2 - 3 = 0). Тогда получаем три случая:
а = 1, с = 5, число 135
а = 3, с = 3, число 333
а = 5, с = 1, число 531
Это все числа, удовлетворяющие условиям