А) 2/5 и 5/12 = 8/60 и 25/60Б) 5/12 и 7/8 = 10/24 и 21/24В) 6/17 и 11/34 = 204/578 и 187/578Г) 5/16 и 5/12 = 15/48 и 20/48Д) 7/33 и 3/77 = 48/231 и 9/231Е) 5/22 и 2/55 = 25/110 и 4/110Ж) 4/15 и 3/20 = 16/60 и 9/60З) 5/121 и 8/99 = 40/1089 и 88/1089И) 1/72 и 1/56 = 7/504 и 9/504К) 1/48 и 1/72 = 3/144 и 2/144Л) 2/77и 3/44 = 8/308 и 21/308М) 1/51 и 1/68 = 4/204 и 3/204Н) 5/36 и 7/54 = 15/108 и 14/108О) 9/35 и 11/45 = 81/315 и 77/315П) 4/49 и 5/63 = 36/441 и 35/441Р) 15/98 и 13/72 = 540/3528 и 637/3528 вот чтото типо того)
А) например, подойдет 8, уравнение 3t^2 - 8t + 4 = 0 Вообще, если неизвестный коэффициент обозначить за u, то подойдет любое u, для которого дискриминант u^2 - 4 * 3 * 4 = u^2 - 48 > 0
в) Нужно написать многочлен, корни которого t = -t1 и t = -t2. Это может быть, например, многочлен (t + t1)(t + t2) = (t + 2/3)(t + 2) Самый простой построить такой многочлен, не вычисляя корней, – воспользоваться теоремой Виета и её обратной. Для противоположных корней сумма меняет знак, а произведение остается прежним, так что 3t^2 + 8t + 4 подходит.
Вообще, если неизвестный коэффициент обозначить за u, то подойдет любое u, для которого дискриминант u^2 - 4 * 3 * 4 = u^2 - 48 > 0
б) D = 8^2 - 48 = 16 = 4^2
t = (8 +- 4)/6
t1 = (8 - 4)/6 = 2/3
t2 = (8 + 4)/6 = 2
в) Нужно написать многочлен, корни которого t = -t1 и t = -t2.
Это может быть, например, многочлен (t + t1)(t + t2) = (t + 2/3)(t + 2)
Самый простой построить такой многочлен, не вычисляя корней, – воспользоваться теоремой Виета и её обратной. Для противоположных корней сумма меняет знак, а произведение остается прежним, так что 3t^2 + 8t + 4 подходит.