Алгебраическое решение: Один угол = х Второй угол = 2х Третий угол = х + 28 Решение: х + 2х + х + 28 = 180 4х = 180 - 28 4х = 152 х = 38 2х = 76 х + 28 = 66 ответ: один ∠ = 38градусов, другой ∠ = 76градусов; третий ∠ = 66 градусов.
Арифметический Один угол = 1 части Второй угол = 2 частям Третий угол = 1 часть + 28 градусов Решение: 1) 180 - 28 = 152(градусов) 2) 1 + 2 + 1 = 4 (части) составляют 152 градусов 3) 152 : 4 = 38(градусов) - это один угол 4) 38 * 2 = 76(градусов) - это второй угол 5) 38 + 28 = 66(градусов) - это третий угол ответ: тот же.
Раз O - начало координат и СО - высота, медина равнобедренного треугольника. То A(-6;0), B(6;0), C(0;10). N и M середины боковых сторон, исходя из того, что главная высота ранобедренного треугольника совпадает с осью координат, следует что проекции точек M и N на координатные оси, составляют половину от CO и AO.
N(3;5), M(-3;5).
AC=BC, поэтому AM=BN.
Треугольники AMB, BNA равны по двум сторонам и углу между ними (AM=BN, AB- общая, ∠MAB=∠NBA, как углы при основании равнобедр. тр). Из равенства треуг. следует AN=BM.
Один угол = х
Второй угол = 2х
Третий угол = х + 28
Решение:
х + 2х + х + 28 = 180
4х = 180 - 28
4х = 152
х = 38
2х = 76
х + 28 = 66
ответ: один ∠ = 38градусов, другой ∠ = 76градусов;
третий ∠ = 66 градусов.
Арифметический
Один угол = 1 части
Второй угол = 2 частям
Третий угол = 1 часть + 28 градусов
Решение:
1) 180 - 28 = 152(градусов)
2) 1 + 2 + 1 = 4 (части) составляют 152 градусов
3) 152 : 4 = 38(градусов) - это один угол
4) 38 * 2 = 76(градусов) - это второй угол
5) 38 + 28 = 66(градусов) - это третий угол
ответ: тот же.
Раз O - начало координат и СО - высота, медина равнобедренного треугольника. То A(-6;0), B(6;0), C(0;10). N и M середины боковых сторон, исходя из того, что главная высота ранобедренного треугольника совпадает с осью координат, следует что проекции точек M и N на координатные оси, составляют половину от CO и AO.
N(3;5), M(-3;5).
AC=BC, поэтому AM=BN.
Треугольники AMB, BNA равны по двум сторонам и углу между ними (AM=BN, AB- общая, ∠MAB=∠NBA, как углы при основании равнобедр. тр). Из равенства треуг. следует AN=BM.
AN найдём как расстояние между точками A и N.
A(-6;0), N(3;5).
AN = √106 ≈ 10,3
AN = BM = 10,3