а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пусть было x вёдер воды 2/5x (две пятых икс) отлили в первый раз x-2/5x=3/5x вёдер осталось 3/5x*1/3x=1/5x отлили во второй раз 3/5x-1/5x=2/5x осталось 2/5x=8 вёдер x=8*5/2=20 Т.е. было 20 вёдер воды
Ну, тут объяснять-то нечего, если честно. Начальное количество вёдер мы берём за икс. Следовательно, в первый раз отлили две пятых от всего количества, т.е. две пятых икс. Далее вычислим то, сколько вёдер осталось после первой процедуры: от общего количества отнимаем две пятых, т.е. x-2/5x и получаем 3/5x. Это оставшаяся часть вёдер после первой манипуляции. Далее мы высчитываем треть от трёх пятых, т.е. от оставшегося количества: 1/3х*3/5х и получаем одну пятую икс. Это количество вёдер отлили во второй раз. Теперь от трёх пятых икс (количества вёдер, оставшихся после первого выливания) отнимем одну пятую икс и получим две пятых икс. Две пятых икс равны 8 вёдрам. Далее найдём икс: x=8:2/5=8*5/2=20
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пошаговое объяснение:
2/5x (две пятых икс) отлили в первый раз
x-2/5x=3/5x вёдер осталось
3/5x*1/3x=1/5x отлили во второй раз
3/5x-1/5x=2/5x осталось
2/5x=8 вёдер
x=8*5/2=20
Т.е. было 20 вёдер воды
Ну, тут объяснять-то нечего, если честно. Начальное количество вёдер мы берём за икс. Следовательно, в первый раз отлили две пятых от всего количества, т.е. две пятых икс. Далее вычислим то, сколько вёдер осталось после первой процедуры: от общего количества отнимаем две пятых, т.е. x-2/5x и получаем 3/5x. Это оставшаяся часть вёдер после первой манипуляции. Далее мы высчитываем треть от трёх пятых, т.е. от оставшегося количества: 1/3х*3/5х и получаем одну пятую икс. Это количество вёдер отлили во второй раз. Теперь от трёх пятых икс (количества вёдер, оставшихся после первого выливания) отнимем одну пятую икс и получим две пятых икс. Две пятых икс равны 8 вёдрам. Далее найдём икс: x=8:2/5=8*5/2=20