11*5+11*4=55+44=99 99:9=11 cм - длина одной стороны девятиугольника
Надо набрать 9 раз по 11 см. Возможные варианты составления
11=5+4+2 11=4+4+3 11=5+3+3
Наименьшее число разломов 5:
Надо разломать 5 палочек длиной 5 см на кусочки 3 см и 2 см 5+4+2 4+4+3 Использовано две палочки по 5 см и три палочки по 4 см Получены 2 стороны по 11 см Повторяем этот процесс еще 2 раза Итого использовано 6 палочек по 5 с и 9 палочек по 4 см Получено 6 сторон по 11 см 5+4+2 5+4+2 5+3+3 Получили оставшиеся три стороны по 11 см и использовали пять палочек по 5 см и две палочки по 4 см.
Пример №1. Дана функция z=z(x,y), точка A(x0,y0) и вектор a. Найти: 1) grad z в точке А; 2) производную данной функции в точке А в направлении вектора a.Решение. z = 5*x^2*y+3*x*y^2 Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(6;-8).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает. Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №2. Даны z=f(x; y), А(х0, у0). Найти а) градиент функции z=f(x; y) в точке А. б) производную в точке А по направлению вектора а.Пример №3. Найти полный дифференциал функции, градиент и производную вдоль вектора l(1;2). z = ln(sqrt(x^2+y^2))+2^xРешение. Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем производную в точке А по направлению вектора а(1;2).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает. Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №4. Дана функция . Найти: 1) gradu в точке A(5; 3; 0); 2) производную в точке А в направлении вектора . Решение. 1. . Найдем частные производные функции u в точке А. ;; , . Тогда 2. Производную по направлению вектора в точке А находим по формуле . Частные производные в точке А нами уже найдены. Для того чтобы найти , найдем единичный вектор вектора . , где . Отсюда .Пример №5. Даны функция z=f(x), точка А(х0, у0) и вектор a. Найти: 1) grad z в точке А; 2) производную в точке А по направлению вектора a. Решение. Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(2;-5).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Поскольку ∂z/∂a < 0, то заданная функция в направлении вектора a убывает
99:9=11 cм - длина одной стороны девятиугольника
Надо набрать 9 раз по 11 см.
Возможные варианты составления
11=5+4+2
11=4+4+3
11=5+3+3
Наименьшее число разломов 5:
Надо разломать 5 палочек длиной 5 см на кусочки 3 см и 2 см
5+4+2
4+4+3
Использовано две палочки по 5 см и три палочки по 4 см
Получены 2 стороны по 11 см
Повторяем этот процесс еще 2 раза
Итого использовано 6 палочек по 5 с и 9 палочек по 4 см
Получено 6 сторон по 11 см
5+4+2
5+4+2
5+3+3
Получили оставшиеся три стороны по 11 см
и использовали пять палочек по 5 см и две палочки по 4 см.
Пример №1. Дана функция z=z(x,y), точка A(x0,y0) и вектор a. Найти:
1) grad z в точке А; 2) производную данной функции в точке А в направлении вектора a.Решение.
z = 5*x^2*y+3*x*y^2
Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(6;-8).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает.
Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №2. Даны z=f(x; y), А(х0, у0).
Найти а) градиент функции z=f(x; y) в точке А.
б) производную в точке А по направлению вектора а.Пример №3. Найти полный дифференциал функции, градиент и производную вдоль вектора l(1;2).
z = ln(sqrt(x^2+y^2))+2^xРешение.
Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем производную в точке А по направлению вектора а(1;2).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает.
Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №4. Дана функция . Найти:
1) gradu в точке A(5; 3; 0);
2) производную в точке А в направлении вектора .
Решение.
1. .
Найдем частные производные функции u в точке А.
;;
, .
Тогда
2. Производную по направлению вектора в точке А находим по формуле
.
Частные производные в точке А нами уже найдены. Для того чтобы найти , найдем единичный вектор вектора .
, где .
Отсюда .Пример №5. Даны функция z=f(x), точка А(х0, у0) и вектор a. Найти: 1) grad z в точке А; 2) производную в точке А по направлению вектора a.
Решение.
Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(2;-5).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Поскольку ∂z/∂a < 0, то заданная функция в направлении вектора a убывает