При раскрытом парашюте парашютист равномерно спускался с высоты 577 м за 4 мин 18 с. Какая скорость спуска с парашютом? ответить: Скорость спуска с парашютом составляет ___ m/s. (Результаты округлить до сотых!)
Проверяй и заодно СВОЮ голову наполняй: Признаки делимости Признаки делимости на 2, 4, 8, 3, 9, 6, 5, 25, 10, 100, 1000, 11.
Признак делимости на 2. Число делится на 2, если его последняя цифра - ноль или делится на 2. Числа, делящиеся на два, называются чётными, не делящиеся на два – нечётными.
Признак делимости на 4. Число делится на 4, если две его последние цифры - нули или образуют число, которое делится на 4.
Признак делимости на 8. Число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8.
Признаки делимости на 3 и 9. Число делится на 3, если его сумма цифр делится на 3. Число делится на 9, если его сумма цифр делится на 9.
Признак делимости на 6. Число делится на 6, если оно делится на 2 и на 3.
Признак делимости на 5. Число делится на 5, если его последняя цифра - ноль или 5.
Признак делимости на 25. Число делится на 25, если две его последние цифры - нули или образуют число, которое делится на 25.
Признак делимости на 10. Число делится на 10, если его последняя цифра - ноль.
Признак делимости на 100. Число делится на 100, если две его последние цифры – нули.
Признак делимости на 1000. Число делится на 1000, если три его последние цифры – нули.
Признак делимости на 11. На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, делящееся на 11.
Признаки делимости
Признаки делимости на 2, 4, 8, 3, 9, 6, 5, 25, 10, 100, 1000, 11.
Признак делимости на 2. Число делится на 2, если его последняя цифра - ноль или делится на 2. Числа, делящиеся на два, называются чётными, не делящиеся на два – нечётными.
Признак делимости на 4. Число делится на 4, если две его последние цифры - нули или образуют число, которое делится на 4.
Признак делимости на 8. Число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8.
Признаки делимости на 3 и 9. Число делится на 3, если его сумма цифр делится на 3. Число делится на 9, если его сумма цифр делится на 9.
Признак делимости на 6. Число делится на 6, если оно делится на 2 и на 3.
Признак делимости на 5. Число делится на 5, если его последняя цифра - ноль или 5.
Признак делимости на 25. Число делится на 25, если две его последние цифры - нули или образуют число, которое делится на 25.
Признак делимости на 10. Число делится на 10, если его последняя цифра - ноль.
Признак делимости на 100. Число делится на 100, если две его последние цифры – нули.
Признак делимости на 1000. Число делится на 1000, если три его последние цифры – нули.
Признак делимости на 11. На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, делящееся на 11.
Пошаговое объяснение:
1) Проверяем правильность утверждения при малых n.
n=1: 1=1² - верно
n=2: 1+3=2² - верно
n=3: 1+3+5=3² - верно
2) Предположим, что утверждение верно для n=k.
Тогда справедливо равенство 1+3+5++(2k-1)=k².
3) Докажем, что утверждение верно и для n=k+1.
Слева и справа добавим по 2(k+1)-1:
Получим 1+3+5++(2k-1)+(2(k+1)-1)=k²+2(k+1)-1
Преобразуем правую часть.
k²+2(k+1)-1=k²+2k+1=(k+1)².
Таким образом, из того, что 1+3+5++(2k-1)=k², следует то, что
1+3+5++(2k-1)+(2(k+1)-1)=(k+1)² - верно для n=k+1.