В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kilaur
kilaur
17.04.2022 22:43 •  Математика

При раскрытом парашюте парашютист равномерно спускался с высоты 577 м за 4 мин 18 с. Какая скорость спуска с парашютом? ответить:
Скорость спуска с парашютом составляет
___ m/s.
(Результаты округлить до сотых!)

Показать ответ
Ответ:
guujutuuuu56
guujutuuuu56
24.03.2022 15:18
Проверяй и заодно СВОЮ голову наполняй:
Признаки делимости
Признаки делимости на 2, 4, 8, 3, 9, 6, 5, 25, 10, 100, 1000, 11.

Признак делимости на 2. Число делится на 2, если его последняя цифра - ноль или делится на 2. Числа, делящиеся на два, называются чётными, не делящиеся на два – нечётными.

Признак делимости на 4. Число делится на 4, если две его последние цифры - нули или образуют число, которое делится на 4.

Признак делимости на 8. Число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8.

Признаки делимости на 3 и 9. Число делится на 3, если его сумма цифр делится на 3. Число делится на 9, если его сумма цифр делится на 9.

Признак делимости на 6. Число делится на 6, если оно делится на 2 и на 3.

Признак делимости на 5. Число делится на 5, если его последняя цифра - ноль или 5.

Признак делимости на 25. Число делится на 25, если две его последние цифры - нули или образуют число, которое делится на 25.

Признак делимости на 10. Число делится на 10, если его последняя цифра - ноль.

Признак делимости на 100. Число делится на 100, если две его последние цифры – нули.

Признак делимости на 1000. Число делится на 1000, если три его последние цифры – нули.

Признак делимости на 11. На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, делящееся на 11.
0,0(0 оценок)
Ответ:
artembebko666
artembebko666
31.07.2021 01:57

Пошаговое объяснение:

1) Проверяем правильность утверждения при малых n.

n=1: 1=1² - верно

n=2: 1+3=2² - верно

n=3: 1+3+5=3² - верно

2) Предположим, что утверждение верно для n=k.

Тогда справедливо равенство 1+3+5++(2k-1)=k².

3) Докажем, что утверждение верно и для n=k+1.

Слева и справа добавим по 2(k+1)-1:

Получим 1+3+5++(2k-1)+(2(k+1)-1)=k²+2(k+1)-1

Преобразуем правую часть.

k²+2(k+1)-1=k²+2k+1=(k+1)².

Таким образом, из того, что 1+3+5++(2k-1)=k², следует то, что

1+3+5++(2k-1)+(2(k+1)-1)=(k+1)² - верно для n=k+1.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота