Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.
Составим характеристическое уравнение и решим его:
Общее решение однородного уравнения:
Запишем в общем виде частное решение данного неоднородного уравнения, учитывая, что в правой части стоит произведение экспоненты и на косинус, а также то, что степень экспоненты и выражение под знаком косинуса совпадают с соответствующими выражениями, полученными при решении однородного уравнения:
Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.
Составим характеристическое уравнение и решим его:
Общее решение однородного уравнения:
Запишем в общем виде частное решение данного неоднородного уравнения, учитывая, что в правой части стоит произведение экспоненты и на косинус, а также то, что степень экспоненты и выражение под знаком косинуса совпадают с соответствующими выражениями, полученными при решении однородного уравнения:
Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.
Составим однородное дифференциальное уравнение, соответствующее данному неоднородному:
Составим характеристическое уравнение и решим его:
Общее решение однородного уравнения:
Запишем в общем виде частное решение данного неоднородного уравнения, учитывая, что в правой части стоит произведение экспоненты и на косинус, а также то, что степень экспоненты и выражение под знаком косинуса совпадают с соответствующими выражениями, полученными при решении однородного уравнения:
Находим первую производную:
Находим вторую производную:
Подставляем в исходное уравнение:
Условие равенства левой и правой частей:
Частное решение данного неоднородного уравнения:
Общее решение данного неоднородного уравнения:
Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.
Составим однородное дифференциальное уравнение, соответствующее данному неоднородному:
Составим характеристическое уравнение и решим его:
Общее решение однородного уравнения:
Запишем в общем виде частное решение данного неоднородного уравнения, учитывая, что в правой части стоит произведение экспоненты и на косинус, а также то, что степень экспоненты и выражение под знаком косинуса совпадают с соответствующими выражениями, полученными при решении однородного уравнения:
Находим первую производную:
Находим вторую производную:
Подставляем в исходное уравнение:
Условие равенства левой и правой частей:
Частное решение данного неоднородного уравнения:
Общее решение данного неоднородного уравнения: