Объяснение: на 3 делятся числа, при сумме цифр которых сумма делиться на 3: например, делиться ли 564 на 3? 5+6+4=15, а 15 на три без остатка делиться.
На десять делятся числа, коечаюшиеся 0: 500. Но на задании сказано, что нужно те, которые НЕ делятся на 10, значит число не должно кончатся 0: 604.
На два же делиться чётные числа, то есть числа, которые кончаются цифрами 2,4,6,8,0. Например: 604 кончается цифрой 4, значит делиться на два без остатка.
1) При х1 = 1 и у1 =2 значение выражения (х+у)*2 = 6.
2) При х2 = -2 и у2 = -1 значение выражения (х+у)*2 = - 6.
Пошаговое объяснение:
1) Умножим левую и правую части уравнения
2/х - 2/у = 1 на ху:
2у - 2х = ху,
2 (у-х) = ху,
а так как (у-х) = 1, то в полученном выражении заменим (у-х) на 1, получаем:
2 * 1 = ху,
откуда х = 2/у.
2) Полученное выражение х через у подставим в уравнении (у-х)=1:
у - 2/у = 1;
умножаем левую и правую части этого уравнения на у:
у^2 - 2 = у,
у^2 - у - 2 = 0;
по теореме Виета находим корни
у1 = 2, у2 = -1.
3) Если у1 = 2, то
(2-х) = 1, откуда х1 = 1.
4) Если у2 = -1, то
(-1-х) = 1, откуда х2 = -2.
5) ПРОВЕРИМ найденные значения по первому уравнению:
а) 2/1-2/2= 1 - первая пара х и у подходит;
б) 2/(-2) -2/(-1) = -1 + 2 = 1 - вторая пара х и у также подходит;
5) Находим значение выражения (х+у)2:
а) при х1 = 1 и у1 = 2:
(х+у)*2 = (1+2)*2 = 6;
б) при х2 = -2 и у2 = -1:
(х+у)2 = (-2-1)*2 = - 6.
а) х=4: 542+4=546
б) х=62: 542+62=604
в) х=2: 542+2=544
Объяснение: на 3 делятся числа, при сумме цифр которых сумма делиться на 3: например, делиться ли 564 на 3? 5+6+4=15, а 15 на три без остатка делиться.
На десять делятся числа, коечаюшиеся 0: 500. Но на задании сказано, что нужно те, которые НЕ делятся на 10, значит число не должно кончатся 0: 604.
На два же делиться чётные числа, то есть числа, которые кончаются цифрами 2,4,6,8,0. Например: 604 кончается цифрой 4, значит делиться на два без остатка.