Переведем длину ребра куба из дециметров в сантиметры, и сравним ее с длиной ребра выемки:
1 дм = 10 см.
Т.к. длина ребра куба больше длины ребра выемки, то его объем больше чем объем выемки, и выемка будет полностью располагаться внутри него. Куб полностью заполнен мрамором, значит выемка из него, так же будет заполнена мрамором, и не будет полой. Найдем объем выемки:
8 * 8 * 8 = 512 (см3).
Переведем ответ в кубические метры:
512 * 0.000001 = 0,000512 (м3).
ответ: объем выемки составляет 0,000512 кубических метра.
Решение. Убедимся, что точка не лежит на прямой, данной в условии:
4/5 ≠ (3-1)/-1 ≠ (1+3)/3.
Из уравнения данной прямой следует, что точка M1(0;1; -3) лежит на этой прямой.
Пусть M(x;y;z) - произвольная точка искомой плоскости, тогда векторы MoM(x-4; y-3; z-1), M1Mo(4; 2; 4) и s(5; -1; 3) компланарны. Следовательно, их смешанное произведение равно нулю:
Переведем длину ребра куба из дециметров в сантиметры, и сравним ее с длиной ребра выемки:
1 дм = 10 см.
Т.к. длина ребра куба больше длины ребра выемки, то его объем больше чем объем выемки, и выемка будет полностью располагаться внутри него. Куб полностью заполнен мрамором, значит выемка из него, так же будет заполнена мрамором, и не будет полой. Найдем объем выемки:
8 * 8 * 8 = 512 (см3).
Переведем ответ в кубические метры:
512 * 0.000001 = 0,000512 (м3).
ответ: объем выемки составляет 0,000512 кубических метра.
Провести плоскость через прямую
и точку Mo(4; 3; 1).
Решение. Убедимся, что точка не лежит на прямой, данной в условии:
4/5 ≠ (3-1)/-1 ≠ (1+3)/3.
Из уравнения данной прямой следует, что точка M1(0;1; -3) лежит на этой прямой.
Пусть M(x;y;z) - произвольная точка искомой плоскости, тогда векторы MoM(x-4; y-3; z-1), M1Mo(4; 2; 4) и s(5; -1; 3) компланарны. Следовательно, их смешанное произведение равно нулю:
x-4 y-3 z-1| x-4 y-3
4 2 4| 4 2
5 -1 3| 5 -1 =
= 6(x-4) + 20(y-3) - 4(z-1) - 12(y-3) + 4(x-4) - 10(z-1) =
= 6x -24 +20y - 60 - 4z + 4 - 12y + 36 + 4x - 16 - 10z + 10 =
= 10x + 8y - 14z - 50 = 0 или, сократив на 2:
5x + 4y - 7z - 25 = 0.
Таким образом, нормальный вектор искомой плоскости равен:
(5; 4; -7).