2. чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх; подписываем оси : вправо - х, вверх -у; отмечаем начало координат - точку О(0; 0) и единичные отрезки по кадой оси в 1 клетку.
3. найдем вершину параболы
х(в) = -b/2a х(в) = 2/2 = 1
у(в) = 1-2-3= -4
В(1;-4)
4) найдем нули функции:
х²-2х-3=0
Д = 4+12=16=4²
х(1) = (2-4)/2 = -1/2
х(2) = (2+4) / 2 = 3
(-1/2; 0) и (3; 0) - нули функции
5) Отметим в системе координат вершину и нули функции
6) Проведём относительно вершины "новую" систему координат и в ней построим график функции у=х². Этот график обязательно пройдет через точки (-1/2; 0) и (3; 0).
поскольку 4a<9, то a, которое удовлетворяет этому неравенству это 2(4*2 = 8<9). Ну и по смыслу второго неравенства вижу, что если a по-прежнему равно 2, то получается верное неравенство(3*2>4). Других вариантов у нас нет, так как данное число должно удовлетворять одновременно двум неравенствам. Значит, это число
2.
Либо же можно решить систему неравенств:
4a<9 a<2.25
3a>4 a>1+1/3
Находим разумеется пересечение решений этих неравенств, получаю промежуток:
(1+1/3;2.25). Но нас спрашивали в задаче про целые числа, значит a = 2 из этого промежутка 2 единственное целое число
у= х²-2х-3
1. график парабола, ветви вверх
2. чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх; подписываем оси : вправо - х, вверх -у; отмечаем начало координат - точку О(0; 0) и единичные отрезки по кадой оси в 1 клетку.
3. найдем вершину параболы
х(в) = -b/2a х(в) = 2/2 = 1
у(в) = 1-2-3= -4
В(1;-4)
4) найдем нули функции:
х²-2х-3=0
Д = 4+12=16=4²
х(1) = (2-4)/2 = -1/2
х(2) = (2+4) / 2 = 3
(-1/2; 0) и (3; 0) - нули функции
5) Отметим в системе координат вершину и нули функции
6) Проведём относительно вершины "новую" систему координат и в ней построим график функции у=х². Этот график обязательно пройдет через точки (-1/2; 0) и (3; 0).
7) подпишем график у=х²-2х-3.
Теперь ответим по графику на вопросы:
а) функция возраст при х∈(1;+∞)
функция убывает при х∈(-∞; 1)
б) у(наим) = -4 и достигается в точке х=1
в) у<0 при х∈(-1/2; 3)
поскольку 4a<9, то a, которое удовлетворяет этому неравенству это 2(4*2 = 8<9). Ну и по смыслу второго неравенства вижу, что если a по-прежнему равно 2, то получается верное неравенство(3*2>4). Других вариантов у нас нет, так как данное число должно удовлетворять одновременно двум неравенствам. Значит, это число
2.
Либо же можно решить систему неравенств:
4a<9 a<2.25
3a>4 a>1+1/3
Находим разумеется пересечение решений этих неравенств, получаю промежуток:
(1+1/3;2.25). Но нас спрашивали в задаче про целые числа, значит a = 2 из этого промежутка 2 единственное целое число