Уравнением с одной переменной, называется равенство, содержащее только одну переменную.
Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Найти все корни уравнения или доказать, что их нет – это значит решить уравнение.
Свойство 1. При переносе слагаемого из одной части уравнения в другую с противоположным знаком, получается уравнение с теми же корнями.
x – 3 = 6 ⇒ x = 6 + 3 ⇒ x = 9 .
Свойство 2. При умножении или делении обеих частей уравнения на одно и то же число, отличное от нуля, мы получим уравнение с теми же корнями (решениями).
3x = 6 ⇒ 3x : 3 = 6 : 3 ⇒ x = 2 .
Уравнение вида ax = b называется линейным. Например:
1. 3x = 9 ( ax = b ) .
2. 3x – 3 = 9 ;
3x = 9 + 3 ;
3x = 12 ( ax = b ) .
Принято: цифры в алгебраических выражениях заменять
первыми буквами латинского алфавита — a, b, c, …,
а переменные обозначать последними — x, y, z.
a ≠ 0 b — любое значение ax = b имеет один корень x = b : a .
a = 0 b ≠ 0 ax = b не имеет корней .
a = 0 b = 0 ax = b имеет бесконечно много корней .
3x = 3 один корень x = 3 : 3 x = 1 .
0 • x = 5 корней нет .
0 • x = 0 бесконечно много корней x — любое число .
Линейное уравнение с одной переменной . Правила
Уравнением с одной переменной, называется равенство, содержащее только одну переменную.
Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Найти все корни уравнения или доказать, что их нет – это значит решить уравнение.
Свойство 1. При переносе слагаемого из одной части уравнения в другую с противоположным знаком, получается уравнение с теми же корнями.
x – 3 = 6 ⇒ x = 6 + 3 ⇒ x = 9 .
Свойство 2. При умножении или делении обеих частей уравнения на одно и то же число, отличное от нуля, мы получим уравнение с теми же корнями (решениями).
3x = 6 ⇒ 3x : 3 = 6 : 3 ⇒ x = 2 .
Уравнение вида ax = b называется линейным. Например:
1. 3x = 9 ( ax = b ) .
2. 3x – 3 = 9 ;
3x = 9 + 3 ;
3x = 12 ( ax = b ) .
Принято: цифры в алгебраических выражениях заменять
первыми буквами латинского алфавита — a, b, c, …,
а переменные обозначать последними — x, y, z.
a ≠ 0 b — любое значение ax = b имеет один корень x = b : a .
a = 0 b ≠ 0 ax = b не имеет корней .
a = 0 b = 0 ax = b имеет бесконечно много корней .
3x = 3 один корень x = 3 : 3 x = 1 .
0 • x = 5 корней нет .
0 • x = 0 бесконечно много корней x — любое число .
Пошаговое объяснение:
Відповідь:
1. Г)
2. Б)
3. В)
4. А)
5. В)
6. А)
7. На фото.
8. Розв'язуємо методом додавання.
Друге рівняння домножаємо на 3.
Відповідь: 2; -3.
На фото знизу.
9.
Нехай х - власна швидкість теплохода,
у - швидкість течії.
Значить складаємо рівняння:
(х + у) - швидкість за течією,
(х - у) - швидкість проти течії.
Значить складаємо систему:
{4(х + y) +5(x - y) = 214
{6(x+y) + 3(x-y)=222
{9x=214 + y
{9x=222-3y
214 + y=222-3y
у+3у=222-214
4y=8
у=8:4
y=2
9x=214 + 2
9x=216
х=216:9
x=24 (км/год)
Тоді, 24-2=22 (км/год).
(Від власної швидкості теплохода віднімаємо швидкість течії).
Відповідь: швидкість теплохода проти течії 22 км/год.