Привести уравнения кривых к каноническому виду. Найти эксцентриситет, координаты фокусов, уравнения директрис и асимптот (если есть). Сделать чертеж. а) x^2+20y=0 б) 9x^2-16y^2-16x-32y-124=0
(5 2/9у+3 1/3) *3 -7 2/3у-переводим все числа в неправильную дробь, получаем(47/9у(сорок семь девятых у) + 10/3 десять третьих) *3 -23/3у двадцать три третьих у, далее я пишу тебе решение (47/9у*3 +10/3*3) -23/3у=( 47 у*3/9+ 10*3/3) -23/3у, в числителе и знаменателе сокращаем на 3, получаем, (47у/3 +10) - 23/3у, раскрываем скобки и вычитаем у, получаем 47у/3-23/3 у +10 =24у/3 +10, теперь вместо у- подставляем 3 1/8 превращаем 3 1/8 в неправильную дробь=25/8, у нас получился пример:24/3*25/8+10, числитель 24 и знаменатель 8 сокращеем на 8, в первой дроби получится 3/3 во второй 25/1+10, первую дробь сокращаем=1*25 +10=35 ответ 35
1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем 5 сантиметров. C
6
Можно сделать иначе: мы умеем откладывать
4 см и 1 см, так что можно отложить их подряд
и получить 5 cм. Ещё один так что достаточно отложить 3 раза по 11 см и потом 4 раза по 7 в другую сторону. (Преимущество
приведённого сначала в том, что он годится
для любого целого числа сантиметров.)
(47/9у*3 +10/3*3) -23/3у=( 47 у*3/9+ 10*3/3) -23/3у, в числителе и знаменателе сокращаем на 3, получаем, (47у/3 +10) - 23/3у, раскрываем скобки и вычитаем у, получаем 47у/3-23/3 у +10 =24у/3 +10, теперь вместо у- подставляем 3 1/8 превращаем 3 1/8 в неправильную дробь=25/8, у нас получился пример:24/3*25/8+10, числитель 24 и знаменатель 8 сокращеем на 8, в первой дроби получится 3/3 во второй 25/1+10, первую дробь сокращаем=1*25 +10=35 ответ 35