В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Осоаовлво
Осоаовлво
26.05.2022 00:53 •  Математика

Прочитай сети ш показывай щи численность населения земли на начало 2016 года если она достигла 7 млрд 309 миллионов 680851 человек и стран указанных в таблице 3 Какие из указанных чисел являются чётными Какие нечётными


Прочитай сети ш показывай щи численность населения земли на начало 2016 года если она достигла 7 млр

Показать ответ
Ответ:
lenapyda
lenapyda
12.02.2021 08:34
Решение задачи 

Булос заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.

Вопрос Булоса: «Означает ли „da“ „да“, только если ты бог правды, а бог B — бог случая?» . Другой вариант вопроса: «Является ли чётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая? »

Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[3][4]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет» , заданный богу правды или богу лжи:

* Если я с тебя Q, ты ответишь «ja»?

результат будет «ja», если верный ответ на вопрос Q это «да» и «da», если верный ответ «нет» . Для доказательства этого можно рассмотреть восемь возможных вариантов:

* Предположим, что «ja» обозначает «да» , а «da» обозначает «нет» :
o Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да» .
o Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет» .
o Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да» .
o Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет» .
* Предположим, что «ja» обозначает «нет» , а «da» обозначает «да» :
o Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да» .
o Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет» .
o Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да» .
o Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет» .

Используя этот факт можно задавать вопросы: [3]

* Спросим бога B: «Если я с у тебя „Бог А — бог случая? “, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом) , либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом) , либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.

* Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог правды? “, ты ответишь „ja“?». Поскольку он не бог случая, ответ «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи.
* Спросим у этого же бога «Если я у тебя с Бог B — бог случая? “, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.

Оставшийся бог определяется методом исключения.
0,0(0 оценок)
Ответ:
Натульчик67
Натульчик67
10.07.2020 13:07
А)  35=5*7    45=3*3*5    НОК(35;45)=3*3*5*7=315        315:35=9  11*9\35*9=99\315            315:45=7    7*7\45*7=49\315                                                б)  60=2*2*3*5        126=2*3*3*7     НОК(60;126)=2*2*3*3*7*5=1260                     1260:60=21       29*21\60*21=609\1260        1260:126=10                                   109*10\126*10=1090\1260                                                                   в)  270=3*3*3*2*5      450=2*5*3*3*5    НОК(270;450)=2*3*3*3*5*5=1350                            1350:270=5      139*5\270*5= 695\1350        1350:450=3       71*3\450*3=213\1350
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота