Прочитайте отрывок из повести Л. Толстого «Кавказский пленник». Служил на Кавказе офицером один барин. Звали его Жилин. Пришло раз ему письмо
из дома. Пишет ему старуха мать: «Стара я уж стала, и хочется перед смертью повидать
любимого сынка. Приезжай со мной проститься, похорони, а там и с богом, поезжай опять на
службу. А я тебе и невесту приискала: и умная, и хорошая, и именье есть. Полюбится тебе,
может, и женишься и совсем останешься». Жилин и раздумался: «И в самом деле: плоха уж
старуха стала; может, и не придется увидать. Поехать; а если невеста хороша — и жениться
можно». Пошел он к полковнику, выправил отпуск, простился с товарищами, поставил своим
солдатам четыре ведра водки на прощанье и собрался ехать. На Кавказе тогда война была. По
дорогам ни днем, ни ночью не было проезда. Чуть кто из русских отъедет или отойдет от
крепости, татары или убьют, или уведут в горы. И было заведено, что два раза в неделю из
крепости в крепость ходили провожатые солдаты. Спереди и сзади идут солдаты, а в средине
едет народ. Дело было летом. Собрались на зорьке обозы за крепость, вышли провожатые
солдаты и тронулись по дороге. Жилин ехал верхом, а телега с его вещами шла в обозе. Ехать
было 25 верст. Обоз шел тихо; то солдаты остановятся, то в обозе колесо у кого соскочит, или
лошадь станет, и все стоят — дожидаются. Солнце уже и за полдни перешло, а обоз только
половину дороги . Пыль, жара, солнце так и печет, а укрыться негде. Голая степь, ни
деревца, ни кустика по дороге.
1. На сколько смысловых частей можно разбить текст? [1]
2. Озаглавьте отрывок. [1]
3. Составьте простой назывной план. [1]
4. Подберите к каждому пункту плана соответствующие цитаты.
Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Пошаговое объяснение:
Укажите сколькими можно выбрать 9 клеток на доске
9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Вспомним как выглядит доска судоку ( рис. 1 во вложении ).
Вся задача сводится к тому , что надо определить сколькими можно разместить цифру в одной клетке , в каждом квадратике 3 х 3 соблюдая условие , что в каждом столбце и каждой строчке будет только одна цифра .
Берем первый сверху ряд .
Пусть первая цифра будет стоять в левом верхнем квадрате . В квадрате 9 клеток , надо выбрать одну , значит у нас будет
выбрать эту клетку .
В следующем квадрате 3 х 3 одна строка у нас уже занята , значит 3 клетки мы не можем выбрать , остается 9-3 = 6 клеточек для выбора . Получаем :
выбрать одну клетку .
Переходим в следующий квадрат 3 х 3 . В нем у нас уже две строки заняты , значит мы не можем выбрать :
3 * 2 = 6 клеток , остается
9 - 6 = 3 клетки для выбора . Получаем :
выбрать одну клетку.
Для наглядности изобразим это на рисунке 2 ( во вложении).
Берем второй ряд.
В первом слева квадрате ( рис. 3 во вложении) у нас 3 клетки заняты , значит остается : 9 - 3 = 6 клеток для выбора . Получаем :
выбрать 1 клетку
В следующем квадрате заняты уже 5 клеток ( рис. 3) , остается :
9 - 5 = 4 клетки для выбора . Получаем :
выбрать 1 клетку
В последнем квадрате занято 7 клеток , остается :
9 - 7 = 2 клетки для выбора . Получаем :
выбрать 1 клетку .
Отметим это все на нашем рисунке 3 ( во вложении) .
Переходим к последнему ряду , третьему .
В первом квадрате занято 6 клеток , остается 9 - 6 = 3 клетки для выбора . Получаем :
выбрать 1 клетку
Во втором квадрате занято 7 клеток, остается : 9 - 7 = 2 клетки для выбора и получаем :
выбрать 1 клетку.
В третьем , последнем квадрате нашей доски , свободный остается 1 квадрат , получаем :
1 * 1 = 1 единственный выбора клетки.
Отмечаем на рисунке 4 ( во вложении)
Мы выбрали 9 клеток , соблюдая условие задачи.
Теперь найдем сколькими можно выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
По правилу умножения :
.
Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
1) -3 + (-7) = -3 -7 = -10
2) -3 -7 = -10
3) -3 + 7 = 7 - 3 = 4
4) -3 - (-7) = (так как - на - даёт + то) = -3 + 7 = 7 - 3 = 4
5) -(-3) -(-7) = 3 + 7 = 10 (опять же - на - даёт плюс)
6) -(-3) + 7 = 3 + 7 = 10
7) -(-3) + (-7) = 3 - 7 = -4
8) -(-3) - 7 = 3 - 7 = - 4
9) 3 - 7 = -4
10) 3 + 7 = 10
11) 3 - (-7) = 3 + 7 = 10
12) 3 + (-7) = 3 - 7 = -4
a) -27 + 49 = 22
б) -27 + (-49) = -76 (по принципу: -1 -3 = -4)
в) -27 -49 = -76
г) 27 - 49 = -22
д) 27 + (-49) = 27 - 49 = -22
е) -(-27) -(-49) = 27 + 49 = 76
ж) -(-27) -49 = 27 - 49 = -22
з) -(-27) + 49 = 27 + 49 = 76
и) -(-27) + (-49)
к) -6 + (-0,6) = -6 - 0,6 = -6,6
л) 3,6 + (-2,4) = 3,6 - 2,4 = 1,2
м) -1,26 + 1,26 = 0
И в следующие разы загружай фотку нормально!