В результате пересечения двумя прямыми, исходящими из одной точки, двух параллельных прямых, образуются два подобных треугольника. Они подобны по трём углам - при верщине углы совпадают, плюс образуются одинаковые углы при пересечении параллельных прямых. ΔPA1A2 подобен ΔPB1B2.
Известно отношение PA1 : A1B1 = 3 : 2 Отсюда следует другое отношение PA1 : PB1 = 3 : 5, т.к. отрезок PB1 состоит из 5 частей.
Т.к. треугольники, указанные выше, подобны, то отношение A1A2 : B1B2 = 3: 5
Откуда, зная, что А1А2 = 6 см, находим В1В2: В1В2 = 5 * А1А2 : 3 = 5 * 6 : 3 = 10 см
угол О - центральный угол. он опирается на дугу, которую мы обозначим АВ, чтобы получился угол АОВ. меньшая дуга АВ равна углу АОВ = 144 гр., так как центральный угол равен дуге.
теперь найдём большую дугу, которая выделена жирным на рисунке. так как вся окружность 360 гр., то большая дуга равна 360-144=216 гр.
угол альфа является вписанным, следовательно он равен половине дуги, на которую он опирается, то есть большой дуги АВ. соответственно угол альфа равен 216 градусов / 2 = 108 гр.
ΔPA1A2 подобен ΔPB1B2.
Известно отношение PA1 : A1B1 = 3 : 2
Отсюда следует другое отношение PA1 : PB1 = 3 : 5, т.к. отрезок PB1 состоит из 5 частей.
Т.к. треугольники, указанные выше, подобны, то отношение
A1A2 : B1B2 = 3: 5
Откуда, зная, что А1А2 = 6 см, находим В1В2:
В1В2 = 5 * А1А2 : 3 = 5 * 6 : 3 = 10 см
ответ: 10 см
ответ: 108 гр.
Пошаговое объяснение:
угол О - центральный угол. он опирается на дугу, которую мы обозначим АВ, чтобы получился угол АОВ. меньшая дуга АВ равна углу АОВ = 144 гр., так как центральный угол равен дуге.
теперь найдём большую дугу, которая выделена жирным на рисунке. так как вся окружность 360 гр., то большая дуга равна 360-144=216 гр.
угол альфа является вписанным, следовательно он равен половине дуги, на которую он опирается, то есть большой дуги АВ. соответственно угол альфа равен 216 градусов / 2 = 108 гр.