Так как среднее арифметическое равно 8,5 км/ч то сумма скорости по течению реки и против течения реки равна 8,5 км/ч*2( так как всего две скорости)=17 км/ч. Скорость лодки против течения реки равна разности суммы скоростей и скорости по течению реки, т.е. 17 км/ч-10,9 км/ч=6,1 км/ч. А скорость течения реки равна разности среднего арифметического скоростей и скорости лодки против течения реки, т.е 8,5 км/ч -6,1 км/ч=2,4 км/ч. ответ: скорость течения реки равна 2,4 км/ч, а скорость лодки против течения реки равна 6,1 км/ч.
Рассмотрим треуг-ки ANC и AMC: У них общее основание - АС, и равные углы при основании, т. к. углы при основании в равнобедренном треугольнике равны. Имеем: угол NAC = углу MCA по условию задачи, но углы BAC=BCA, то есть равны и другие части этих углов - угол МАN=NCM. Таким образом треуг. AMC=треуг. ANC по стороне и двум углам. В равных треугольниках против равных углов лежат равные стороны. След-но, AM=NC. Так как треуг. ABC - равнобедренный, то MB=NC, (AB-AM =MB) = (BC-NC=BN), где AB=BC AM=NC. То есть треуг. MBN - равнобедренный.
ответ: скорость течения реки равна 2,4 км/ч, а скорость лодки против течения реки равна 6,1 км/ч.
У них общее основание - АС, и равные углы при основании, т. к. углы при основании в равнобедренном треугольнике равны. Имеем: угол NAC = углу MCA по условию задачи, но углы BAC=BCA, то есть равны и другие части этих углов - угол МАN=NCM. Таким образом треуг. AMC=треуг. ANC по стороне и двум углам.
В равных треугольниках против равных углов лежат равные стороны. След-но, AM=NC. Так как треуг. ABC - равнобедренный, то MB=NC, (AB-AM =MB) = (BC-NC=BN), где AB=BC AM=NC.
То есть треуг. MBN - равнобедренный.