В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vsjhffdsg
vsjhffdsg
10.06.2020 02:39 •  Математика

Проведіть пряму АВ. Через т. С проведіть пряму k, яка буде паралельна прямій АВ, і пряму p, яка буде перпендикулярна АВ.

Показать ответ
Ответ:
kasatka0556
kasatka0556
16.04.2021 07:13

5: V = 655,66pi см³

6: 1/6

Пошаговое объяснение:

N5

Объем полого шара равен разности двух шаров: большого (с радиусом R=10 см) и малого (с радиусом r=8 см).

4/3*pi*R^3 - объем большого шара.

4/3*pi*r^3 - объем малого шара.

Нам надо узнать V=V₁-V ₂.

V = 4/3*pi*(10^3-8^3)

V = 4/3*pi*488

V = 655,66pi см³

N6

Вероятность выпадения любого на игральной кости: 1/6

Если кости две, то выпадение любого одинакового на этих костях: 1/6 * 1/6 = 1/36

Т.к. всего может быть 6 таких событий (граней на кубике 6): 1/36 * 6 = 1/6

0,0(0 оценок)
Ответ:
Aizek111
Aizek111
06.08.2020 19:52

Пошаговое объяснение:

1) Функция определена при любом значении x, то есть область определения функции D[y]=(-∞;∞).

2) Функция является непрерывной.

3) Так как y(x)≠y(-x) и y(-x)≠-y(x), то функция не является ни чётной, ни нечётной.

4) Функция не является периодической.

5) Исследуем поведение функции при x⇒∞ и при x⇒-∞.

5.1 При x⇒∞ lim y(x)=∞.

5.2 При x⇒-∞ lim y(x)=lim x⁴*lim(3+4/x+12/x²-10/x⁴)=∞.

6) Найдём асимптоты функции.

6.1 Так как функция непрерывна, то есть не имеет точек разрыва, то вертикальных асимптот нет.

6.2 Ищем наклонные асимптоты. Они задаются уравнениями y=k*x+b. Находим k1=lim y(x)/x при x⇒∞: k1=lim (3*x³+4*x²+12*x-10/x)=∞. Отсюда следует, что при x⇒∞ наклонной (и в частности горизонтальной) асимптоты нет. Находим теперь k2=lim y(x)/x при x⇒-∞: k2=lim x³ * lim (3+4/x+12/x²-10/x³)=-∞. Отсюда следует, что при x⇒-∞ наклонной (и в частности горизонтальной) асимптоты также нет.

7) Исследуем функцию на наличие максимумов, минимумов, наибольших и наименьших значений. Находим первую производную: y'(x)=12*x³+12*x²+24*x=12*x(x²+x+2) и приравниваем её к нулю. Отсюда следует уравнение 12*x*(x²+x+2)=0, решая которое, находим единственную критическую точку x=0. Если x<0, то y'(x)<0, поэтому на интервале (-∞;0) функция убывает. Если же x>0, то y'(x)>0, поэтому на интервале (0;∞) функция возрастает. Значит, точка x=0 является точкой минимума, а наименьшее значение функции ymin=y(0)=-10.

8) Находим область значений функции: E[y]=[-10;∞).

9) Исследуем функцию на наличие точек перегиба. Находим вторую производную: y"(x)=36*x²+24*x+24=12*(3*x²+2*x+2) и приравниваем её к нулю. Отсюда следует уравнение 3*x²+2*x+2=0, которое не имеет действительных решений. Значит, точек перегиба функция не имеет. И так как при этом y"(x)=12*(3*x²+2*x+2)>0 для любых значений x, то функция всюду будет вогнутой, или выпуклой вниз.

10) Используя полученные результаты, строим график функции.  

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота