Данная задача, по идее, решается через геометрическую прогрессию, но пока поймешь, как ее использовать – время экзамена выйдет. Поэтому решим ее без формул.
Итак, через 8 минут изотоп Б вберет себя половину массы изотопа А. Его вес составит 80 мг.
Через 16 минут изотоп Б снова вберет себя половину массы оставшегося изотопа А. Т.е. прибавится еще 40 мг и получится изотоп Б массой 80 + 40 = 120 мг.
Через 24 минут к изотопу Б опять прибавится половина массы оставшейся части изотопа А, т.е. изотоп Б будет иметь массу уже 120 + 20 = 140 мг.
Через 32 минут изотоп Б будет весить уже 140 + 10 = 150 мг, т.к. к нему прибавится половина массы оставшегося кусочка изотопа А.
И, наконец, через 40 минут изотоп Б будет иметь массу 150 + 5 = 155 мг.
Предположим, что на втором шаге путешественник не возвратился в А, т.е. город С отличен от города А. Тогда маршрут от А до B короче маршрута из B в С (поскольку С — наиболее удаленный от B город). В дальнейшем каждый следующий маршрут будет не короче предыдущего, так как каждый раз мы в качестве следующего пункта назначения выбираем наиболее удаленный город. Пусть на некотором шаге путешетвенник все же вернулся в город А, выйдя из некоторого города Х. По доказанному, маршрут от Х до А длиннее маршрута от А до B, а это противоречит тому, что B — наиболее удаленный от А город.
Итак, через 8 минут изотоп Б вберет себя половину массы изотопа А. Его вес составит 80 мг.
Через 16 минут изотоп Б снова вберет себя половину массы оставшегося изотопа А. Т.е. прибавится еще 40 мг и получится изотоп Б массой 80 + 40 = 120 мг.
Через 24 минут к изотопу Б опять прибавится половина массы оставшейся части изотопа А, т.е. изотоп Б будет иметь массу уже 120 + 20 = 140 мг.
Через 32 минут изотоп Б будет весить уже 140 + 10 = 150 мг, т.к. к нему прибавится половина массы оставшегося кусочка изотопа А.
И, наконец, через 40 минут изотоп Б будет иметь массу 150 + 5 = 155 мг.