Проверьте, могут ли стороны треугольника иметь указанные размеры 1) 22,57 CM; 2,45 cm; 19,97 CM 2) 7,812 m; 9,31 M; 1,9343 M 3) 10,147 KM; 9,03 KM; 19,108 KM 4) 0,17 m; 0,22 M; -0,29 M 17
Итак, места, где производная равна 0 - это точки перегибов (функция с увеличения идёт на спад или наоборот) .
Вот их и найдём f(x)'=3x^2-2x-1=0; 3x^2-2x-1=0; d=4+12=16 x1=(2-4)/6=-2/6=-1/3 x2=(2+4)/6=1
а теперь посчитаем значения функции для этих двух точек, а также для двух граничных точек (ведь если функция уходит в бесконечность как при x^2 например, то крайние точки могут быть выше или ниже перегибов) .
2.ein modernes Gebäude,vor einem modernen Gebäude,statt eines modernen Gebäudes,hinter einem modernen Gebäude.
3.unser altes Haus,über unser altes Haus,vor unserem alten Haus,in unserem alten Haus.
4.dieser schöne Tag,wegen dieses schönen Tages,an diesem schönen Tag,über diesen schönen Tag.
5.eine wichtige Nachricht,über eine wichtige Nachricht,wegen einer wichtigen Nachricht,statt einer wichtigen Nachricht-
6.mein neuer Computer,ohne meinen neuen Computer,dank meines neuen Computers,für meinen neuen Computer.
Вот их и найдём f(x)'=3x^2-2x-1=0;
3x^2-2x-1=0;
d=4+12=16
x1=(2-4)/6=-2/6=-1/3
x2=(2+4)/6=1
а теперь посчитаем значения функции для этих двух точек, а также для двух граничных точек (ведь если функция уходит в бесконечность как при x^2 например, то крайние точки могут быть выше или ниже перегибов) .
-1: (-1)^3-(-1)^2+1+2=-1-1+1+2=1
-1/3: (-1/3)^3-(-1/3)^2+1/3+2=-1/27-1/9+1/3+2=-1/27-3/27+9/27+2=2+5/27
1: (1)^3-(1)^2-1+2=1-1-1+2=1
3/2: (3/2)^3-(3/2)^2-3/2+2=27/8-9/4-3/2+2=27/8-18/8-12/8+2=-3/8+2=1+5/8
Как видим найбольшее значение мы получили в точке -1/3 (2 целым 5/27), а найменьшее в точках -1 и 1 (единица)
Потому ответ: минимум функции 1, а максимум 2 целых 5/27