Находим производную функции f(x)=2x²-x⁴+1. y ' = -4x³ + 4x = -4x(x² - 1). Приравниваем производную нулю: -4x(x² - 1) = 0. Отсюда получаем критические точки: х₁ = 0, x² - 1 = 0 x² = 1. х₂ = 1, х₃ = -1. На проміжку [-2;0] имеется 2 критические точки: х = -1 и х = 0. Исследуем значение производной вблизи этих точек. х = -1.5 -1 -0.5 0 0.5 y '=-4x³+4x 7.5 0 -1.5 0 1.5. В точке х = -1 переход от + к -, значит, это максимум, а в точке х = 0 переход от - к +, значит, это минимум.
Обозначим Холодильник Х, Телевизор Т, Микроволновку М. Из 65 человек 3 купили сразу 3 покупки. Остальные 62 - меньше трёх. Уменьшим все числа на 3, чтобы дальше не путаться. Всего купили 32 Х, 33 М, 34 Т, 17 купили только Х и М, 16 купили только М и Т, 12 купили только Х и Т. Значит, 32 - 17 - 12 = 3 купили только Х. 33 - 17 - 16 = 0 купили только М, 34 - 16 - 12 = 6 купили только Т. Получается такая картина: 3 человека купили Х, М и Т. 17 купили Х и М. 16 купили М и Т. 12 купили Х и Т. 3 купили только Х, 6 купили только Т. Никто не купил только М. Проверим. Х купили: 3+17+12+3 = 35. М купили 3+17+16 = 36. Т купили 3+16+12+6 = 37. Всё правильно. Всего купивших было: 3 + 17 + 16 + 12 + 3 + 6 = 57 человек. А всего пришло в магазин 65. Значит, 65 - 57 = 8 человек не купили ничего. Диаграмму Эйлера я нарисовал.
y ' = -4x³ + 4x = -4x(x² - 1).
Приравниваем производную нулю:
-4x(x² - 1) = 0.
Отсюда получаем критические точки:
х₁ = 0,
x² - 1 = 0
x² = 1.
х₂ = 1,
х₃ = -1.
На проміжку [-2;0] имеется 2 критические точки:
х = -1 и х = 0.
Исследуем значение производной вблизи этих точек.
х = -1.5 -1 -0.5 0 0.5
y '=-4x³+4x 7.5 0 -1.5 0 1.5.
В точке х = -1 переход от + к -, значит, это максимум,
а в точке х = 0 переход от - к +, значит, это минимум.
Из 65 человек 3 купили сразу 3 покупки. Остальные 62 - меньше трёх.
Уменьшим все числа на 3, чтобы дальше не путаться.
Всего купили 32 Х, 33 М, 34 Т, 17 купили только Х и М, 16 купили только М и Т,
12 купили только Х и Т.
Значит, 32 - 17 - 12 = 3 купили только Х. 33 - 17 - 16 = 0 купили только М,
34 - 16 - 12 = 6 купили только Т.
Получается такая картина: 3 человека купили Х, М и Т. 17 купили Х и М.
16 купили М и Т. 12 купили Х и Т. 3 купили только Х, 6 купили только Т.
Никто не купил только М. Проверим.
Х купили: 3+17+12+3 = 35. М купили 3+17+16 = 36. Т купили 3+16+12+6 = 37.
Всё правильно. Всего купивших было:
3 + 17 + 16 + 12 + 3 + 6 = 57 человек. А всего пришло в магазин 65.
Значит, 65 - 57 = 8 человек не купили ничего.
Диаграмму Эйлера я нарисовал.