етырехугольник АВСД, уголАДВ=уголДВС=90-это внутренние разносторонние углы, если при пересечении двух прямых (АД и ВС) третьей прямой (ВД) внутренние разносторонние углы равны то прямые параллельны, АД паралельна ВС, но АД=ВС, тогда есдли в четырехугольнике две стороны равны и параллельны то четыререхугольник параллелограмм, АВ паралельна СД, АВ=СД, треугольник АВД прямоугольный, уголАВД=60, уголА=90-60=30, ДЕ медиана, медиана в прямоугольном треугольнике проведенная к гипотенузе =1/2 гипотенузы, АЕ=ВЕ=ЕД=1/2АВ, треугольник АЕД равнобедренный, АЕ=ЕД
Доказательство от противного. Допустим, что при данном условии задачи, выполняется противоположное утверждение. Т.е, отрицание того, что в хотя бы одной из клеток два (или более) кроликов. Это означает, что в каждой клетке менее двух кроликов, т.е. в каждой клетке один кролик или ни одного кролика. Но тогда сумма всех кроликов (по клеткам) будет меньше или равно (1+1) = 2, что вступает в противоречие с тем, что кроликов три, т.к. получается, что 3<=2. Т.о., допустив противное, мы пришли в противоречие с условием теоремы. Поэтому наше предположение ложно да и вообще невозможно. Т.о. (по логическому закону исключения третьего) теорема доказана.
етырехугольник АВСД, уголАДВ=уголДВС=90-это внутренние разносторонние углы, если при пересечении двух прямых (АД и ВС) третьей прямой (ВД) внутренние разносторонние углы равны то прямые параллельны, АД паралельна ВС, но АД=ВС, тогда есдли в четырехугольнике две стороны равны и параллельны то четыререхугольник параллелограмм, АВ паралельна СД, АВ=СД, треугольник АВД прямоугольный, уголАВД=60, уголА=90-60=30, ДЕ медиана, медиана в прямоугольном треугольнике проведенная к гипотенузе =1/2 гипотенузы, АЕ=ВЕ=ЕД=1/2АВ, треугольник АЕД равнобедренный, АЕ=ЕД
Пошаговое объяснение: