Прямоугольник составлен из 6 одинаковых квадратов, которые требуется закрасить красками разного цвета. Сколькими можно это сделать, имея набор красок из 18 цветов?
Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
1) 70º, 80º, 100º, 110º.
2) 40º, 50º, 70º, 200º.
Пошаговое объяснение:
1) Дано отношение 7:8:10:11
Следовательно имеется
7+8+10+11=36 частей.
Сумма углов четырехугольника равна 360º.
1 часть=360º:36=10º
7*10º=70º - один угол,
8*10º=80º - второй угол,
10*10º=100º - третий угол,
11*10º=110º - четвертый угол.
Проверка:
70º+80º+100º+110º=360º
360º=360º
2) Дано отношение 4:5:7:20
Следовательно имеется
4+5+7+20=36 частей
Сумма углов четырехугольника равна 360º.
1 часть=360:36=10º
4*10º=40º - один угол,
5*10º=50º - второй угол,
7*10º=70º - третий угол,
20*10º=200º - четвертый угол.
Проверка:
40º+50º+70º+200º=360º
360º:=360º
Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение:
(1) 1/y - 1/x = 3.
За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение:
(2) 4x + 3y = 1 => y = (1 - 4x)/3
Подставляя в (1), получим
3/(1-4x) - 1/x = 3. Умножаем на x(1-4x):
3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2;
12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому
x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6.
Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.